COMPREHENSIVE SERVICES

We offer competitive repair and calibration services, as well as easily accessible documentation and free downloadable resources.

SELL YOUR SURPLUS

We buy new, used, decommissioned, and surplus parts from every NI series. We work out the best solution to suit your individual needs. We Sell For Cash We Get Credit We Receive a Trade-In Deal

OBSOLETE NI HARDWARE IN STOCK & READY TO SHIP

We stock New, New Surplus, Refurbished, and Reconditioned NI Hardware.

APEX WAVES

Bridging the gap between the manufacturer and your legacy test system.

1-800-915-6216
 www.apexwaves.com
 sales@apexwaves.com

 \bigtriangledown

All trademarks, brands, and brand names are the property of their respective owners.

Request a Quote CLICK HERE PCI-4472

NI 447 x Specifications

Français	Deutsch	日本語	한국어	简体中文
ni.com/manuals				

This document lists specifications for the NI 447x Dynamic Signal Acquisition (DSA) devices including the NI PXI/PCI-4472 (NI 4472), NI PCI-4474, and NI PXI/PCI-4472B (NI 4472B). These specifications are typical at 25 °C unless otherwise stated. The system must be allowed to warm up for 15 minutes to achieve the rated accuracy. All specifications are subject to change without notice. Visit ni.com/manuals for the most current specifications and product documentation.

Caution The inputs of this sensitive test and measurement product are not protected for electromagnetic interference for functional reasons. As a result, this product may experience reduced measurement accuracy or other temporary performance degradation when cables are attached in an environment with electromagnetic interference present. Refer to the Declaration of Conformity (DoC) for this product for details of the standards applied to assess electromagnetic compatibility performance. To obtain the DoC, visit ni.com/certification, search by model number or product line, and click the appropriate link in the Certification column.

Note Keep the filler panels on all unused slots in your chassis or computer to maintain forced air cooling.

Analog Input

Channel Characteristics

Number of channels		Sample rates (f_s) ,
NI 4472/4472B NI PCI-4474	sampled	samples-per-second (S/s)102.4 kS/s down to 1.0 kS/s in 190.7 μ S/s increments for $f_s > 51.2$ kS/s or 95.37 μ S/s increments for
Input configuration	Pseudodifferential	$f_{\rm s} \le 51.2 \text{ kS/s}$
Input coupling	software-selectable	ADC modulator oversample rate $1.0 \text{ kS/s} \le f_s \le 51.2 \text{ kS/s} \dots 128 f_s$ $51.2 \text{ kS/s} < f_s \le 102.4 \text{ kS/s} \dots 64 f_s$
ADC type		Sample Clock Timebase, low-frequency alias rejection disabled (default) ¹
		$1.0 \text{ kS/s} \le f_{s} \le 51.2 \text{ kS/s} \dots 256 f_{s}$

 $51.2 \text{ kS/s} < f_{s} \le 102.4 \text{ kS/s} \dots 128 f_{s}$

¹ Low-frequency alias rejection can be enabled at sample rates of 25.6 kS/s and lower for supported NI 447*x* devices. Refer to the *National Instruments Dynamic Signal Acquisition Help* for supported devices and more information.

Sample Clock Timebase, low-frequency alias rejection enabled

Sample Rate (kS/s)	Sample Clock Timebase
$1.0 \le f_{\rm s} \le 1.6$	8,192 f _s
$1.6 < f_{\rm s} \le 3.2$	4,096 <i>f</i> _s
$3.2 < f_{\rm s} \le 6.4$	2,048 f _s
$6.4 < f_{\rm s} \le 12.8$	$1,024 f_{\rm s}$
$12.8 < f_{\rm s} \le 25.6$	$512 f_{\rm s}$
$25.6 < f_{\rm s} \le 51.2$	$256 f_{\rm s}$
$51.2 < f_s \le 102.4$	$128 f_{\rm s}$

FIFO buffer size1,023 samples

Positive input±42.4 V_{pk} Negative input (shield).....Not protected External triggerNot protected

Data transfers.....DMA

Frequency accuracy ±25 ppm

Input signal range..... ±10 V_{pk}

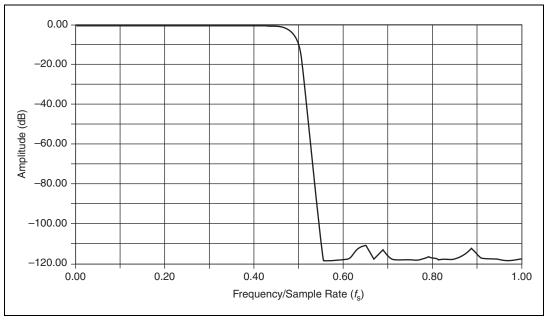
Transfer Characteristics

DC-coupled offset (residual) ±3 mV, max

Gain (amplitude accuracy)..... ± 0.1 dB, max, $f_{in} = 1$ kHz

Amplifier Characteristics

Input Impedance (Ground Referenced)	Pseudodifferential Configuration
Between positive input and chassis ground (NI 447x all revisions and NI PXI-4472B revision G and earlier)	1 MΩ 60 pF
Between positive input and chassis ground (NI PXI-4472B revision H and later)	10 MΩ∥60 pF
Between negative input and chassis ground	50 Ω 0.02 μF


Common-mode rejection ratio (CMRR)

Input frequency $(f_{in}) < 1$ kHz..... 60 dB

Specification	Low-Frequency Alias Rejection Disabled (Default)	Low-Frequency Alias Rejection Enabled
Alias-free bandwidth (BW) (passband)	DC to $0.4535 f_s$	DC to $0.4 f_{\rm s}$
Alias rejection, minimum	110 dBc	104 dBc
Alias rejection by frequency	0.5465 f_{s} < input frequency < 127.4535 f_{s} , where 1.0 kS/s $\leq f_{s} \leq$ 51.2 kS/s 0.5465 f_{s} < input frequency < 63.4535 f_{s} , where 51.2 kS/s < $f_{s} \leq$ 102.4 kS/s	Input frequency > $0.6 f_s$
-3 dB BW	0.491 f _s	0.4863 <i>f</i> _s

Dynamic Characteristics

Overvoltage protection

Aliasing can occur for frequencies around multiples of 128 or $64 f_s$ with low-frequency alias rejection disabled. In Figure 2, the solid line shows the amount of rejection for signals that appear in the f_s -wide windows around multiples of 128 or $64 f_s$.

The dashed line shows the improvement achieved with low-frequency alias rejection enabled. Refer to the *National Instruments Dynamic Signal Acquisition Help* for more information.

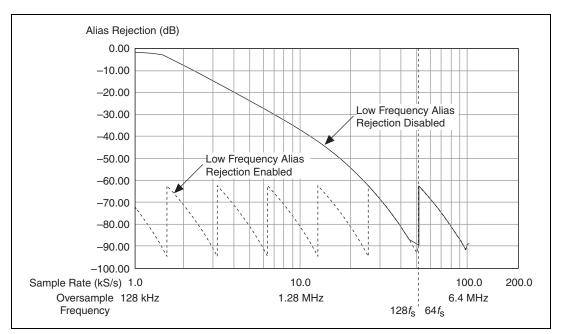


Figure 2. Analog Filter Alias Rejection at Oversample Rates

ADC Filter Delay

Low-Frequency Alias Rejection Disabled (Default)		Low-Frequency Alias Rejection Enabled	
Sample Rate (kS/s)	Filter Delay (Samples)	Sample Rate (kS/s)	Filter Delay (Samples)
$1.0 \le f_{\rm s} \le 1.6$	38.7	$1.0 \le f_{\rm s} \le 1.6$	32
$1.6 < f_{\rm s} \le 3.2$		$1.6 < f_{\rm s} \le 3.2$	32
$3.2 < f_s \le 6.4$		$3.2 < f_{\rm s} \le 6.4$	32
$6.4 < f_{\rm s} \le 12.8$		$6.4 < f_{\rm s} \le 12.8$	33.675
$12.8 < f_{\rm s} \le 25.6$		$12.8 < f_{\rm s} \le 25.6$	35.35
$25.6 < f_{\rm s} \le 102.4$		$25.6 < f_{\rm s} \le 102.4$	38.7

AC –3 dB cut-off frequency

 Flatness, relative to 1 kHz, DC coupled, for sample rate $1.0 \text{ kS/s} \le f_s \le 51.2 \text{ kS/s} \dots \pm 0.03 \text{ dB}$, max $51.2 \text{ kS/s} < f_s \le 102.4 \text{ kS/s} \dots \pm 0.1 \text{ dB}$, max

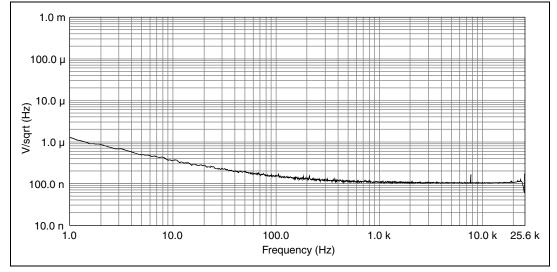


Figure 3. Input Noise Spectral Density at 128-Times Oversampling (50 Ω Connected at Input)

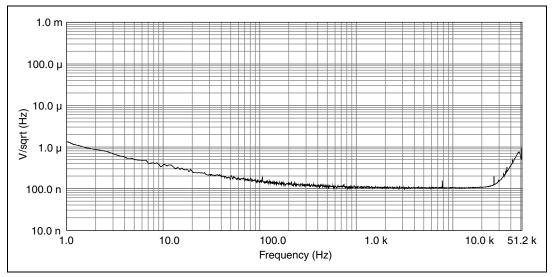


Figure 4. Input Noise Spectral Density at 64-Times Oversampling (50 Ω Connected at Input)

Idle channel noise, for sample rate $f_s = 51.2 \text{ kS/s}$, bandwidth = 25.6 kHz-94 dBV_{rms} $f_s = 102.4 \text{ kS/s}$, bandwidth = 51.2 kHz-81 dBV_{rms}

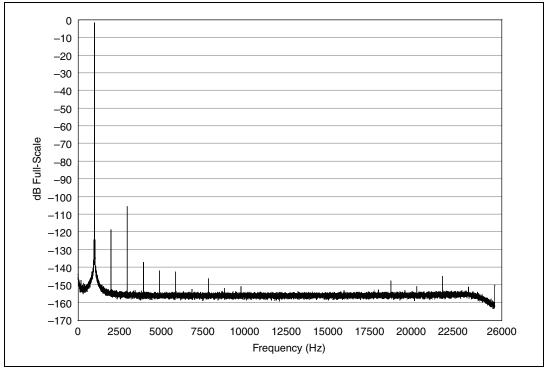
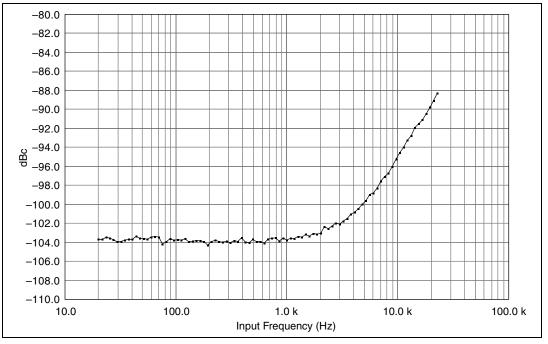


Figure 5. SFDR 51.2 kS/s (-1 dBFS, 1 kHz Sine Wave Input, FFT Size 131,072 Samples, Five Averages)

¹ Measurement includes all harmonics.

 $^{^2~1~}kHz$ input tone, input amplitude is –1 dBFS or 8.91 $V_{\rm pk}.$


Figure 6. SFDR 102.4 kS/s (-1 dBFS, 1 kHz Sine Wave Input, FFT Size 131,072 Samples, Five Averages)

Dynamic range,^{1,2} for sample rate

 $\label{eq:states} \begin{array}{l} 1.0 \mbox{ kS/s} \leq f_{\rm s} \leq 51.2 \mbox{ kS/s}.....111 \mbox{ dB} \\ 51.2 \mbox{ kS/s} < f_{\rm s} \leq 102.4 \mbox{ kS/s}......99 \mbox{ dB} \end{array}$

¹ Bandwidth equals $0.4535 f_s$ starting from 20 Hz.

² 1 kHz input tone, input amplitude is -60 dBFS.

THD+N ²	–97 dBc
IMD	100 dBc
	(CCIF 14 kHz + 15 kHz)

Crosstalk (Channel Separation)*,†	Shorted Input	1 kΩ Load
Adjacent channels	<-90 dB	<-80 dB
Other channel combinations	<-100 dB	<-90 dB
* Measured with full-scale ($\pm 10 \text{ V}$) input. † $f_{\text{in}} = 0 \text{ to } 51.2 \text{ kHz}$		

Interchannel gain mismatch, for sample rate

```
1.0 kS/s \leq f_s \leq 51.2 kS/s ......±0.06 dB, max
51.2 kS/s < f_s \leq 102.4 kS/s ......±0.2 dB, max
```

Phase linearity
 $\pm 0.5^{\circ}$

¹ 1 kHz input tone, input amplitude is –1 dBFS.

² 1 kHz input tone, -1 dBFS, 50 kHz measurement bandwidth.

Onboard Calibration Reference

DC level	5.000 V ±2.5 mV
Temperature coefficient	±5 ppm/°C max
Long-term stability	$\pm 20 \text{ ppm}/\sqrt{1,000 \text{ h}}$

Integrated Electronic Piezoelectric (IEPE)

Current	0 or 4 mA, ±5%, each channel independently software selectable
Compliance	24 V
Output impedance	>250 k Ω at 1 kHz
Current noise	$<500 \text{ pA}/\sqrt{\text{Hz}}$

Triggers

Analog trigger	
Purpose	Start trigger or reference
Source	
NI 4472/4472B	CH<07>
NI PCI-4474	CH<03>
Level	Full scale, programmable
Slope	Positive (rising) or negative (falling), software-selectable
Resolution	24 bits
Hysteresis	Programmable
Digital trigger	
Purpose	Start or reference trigger

Purpose	Start or reference trigger
Compatibility	5 V TTL/CMOS
Polarity	Rising or falling edge
Minimum pulse width	100 ns

General Specifications

Bus Interface

PCI or PXI	
	environment

Synchronization

PXI	
PXI_STAR	Up to 14 devices per
	chassis

PCI

RTSI	Up to 5 devices across
	ribbon cable

Power Requirements

+5 VDC

NI PCI-4472/4472B	2,600 mA, max
NI PCI-4474	2,000 mA, max
NI PXI-4472/4472B	2,000 mA, max
+12 VDC	120 mA, max
-12 VDC	120 mA, max

Physical

Dimensions (not including connect	ctors)
NI PCI-4472/4472B/4474	17.5 × 10.7 cm
	$(6.9 \times 4.2 \text{ in.})$
NI PXI-4472/4472B	16.0 \times 9.9 cm
	(6.3 × 3.9 in.)
	(1 3U CompactPCI slot)

Weight

NI PCI-4472/4472B	198 g (7 oz)
NI PCI-4474	
NI PXI-4472/4472B	241 g (8.5 oz)
Analog I/O connectors	SMB male

Digital trigger connectorSMB male

Environmental

Operating Environment

Ambient temperature range

PXI-447x	0 to 55 °C
	(Tested in accordance with IEC-60068-2-1 and IEC-60068-2-2.)
PCI-447x	0 to 50 °C
	(Tested in accordance with IEC-60068-2-1 and IEC-60068-2-2.)
Relative humidity range10 to 90%,	
	noncondensing
	(Tested in accordance with IEC-60068-2-56.)
Altitude	2,000 m (at 25 °C ambient temperature)
Pollution Degree	
(indoor use only)	2
Storage Environment	
Ambient temperature range	–20 to 70 °C

Ambient temperature range	20 to 70 °C
	(Tested in accordance with IEC-60068-2-1 and IEC-60068-2-2.)
Relative humidity range	5 to 95%, noncondensing (Tested in accordance with IEC-60068-2-56.)

Shock and Vibration (PXI Only)

Operational shock	30 g peak, half-sine,
	11 ms pulse
	(Tested in accordance
	with IEC-60068-2-27.
	Test profile developed in
	accordance with
	MIL-PRF-28800F.)

Random vibration

Operating	5 to 500 Hz, 0.3 g _{rms}
Nonoperating	5 to 500 Hz, 2.4 g _{rms}
	(Tested in accordance
	with IEC-60068-2-64.
	Nonoperating test profile
	exceeds the requirements
	of MIL-PRF-28800F,
	Class 3.)

Calibration

Self-calibration	.On software command,
	the device computes gain and offset corrections relative to high-precision internal reference
Interval	.Recommended whenever ambient temperature differs from T_{cal} by more than ± 5 °C
External calibration interval1 year	

Warm-up time.....15 minutes

Maximum Working Voltage

Maximum working voltage refers to the signal voltage plus the common-mode voltage.

Channel-to-earth	
	Category I

Caution Do *not* use the NI 447x for connections to signals or for measurements within Categories II, III, or IV.

Safety

This product meets the requirements of the following standards of safety for electrical equipment for measurement, control, and laboratory use:

- IEC 61010-1, EN 61010-1
- UL 61010-1, CSA 61010-1

Note For UL and other safety certifications, refer to the product label or the *Online Product Certification* section.

Electromagnetic Compatibility

This product meets the requirements of the following EMC standards for electrical equipment for measurement, control, and laboratory use:

- EN 61326 (IEC 61326): Class A emissions; Basic immunity
- EN 55011 (CISPR 11): Group 1, Class A emissions
- AS/NZS CISPR 11: Group 1, Class A emissions
- FCC 47 CFR Part 15B: Class A emissions
- ICES-001: Class A emissions

Note For the standards applied to assess the EMC of this product, refer to the *Online Product Certification* section.

Note For EMC compliance, operate this device with shielded cables.

Note For EMC compliance, operate this product according to the documentation.

CE Compliance $C \in C$

This product meets the essential requirements of applicable European Directives as follows:

- 2006/95/EC; Low-Voltage Directive (safety)
- 2004/108/EC; Electromagnetic Compatibility Directive (EMC)

Online Product Certification

Refer to the product Declaration of Conformity (DoC) for additional regulatory compliance information. To obtain product certifications and the DoC for this product, visit ni.com/certification, search by model number or product line, and click the appropriate link in the Certification column.

Environmental Management

NI is committed to designing and manufacturing products in an environmentally responsible manner. NI recognizes that eliminating certain hazardous substances from our products is beneficial to the environment and to NI customers.

For additional environmental information, refer to the *NI and the Environment* Web page at ni.com/environment. This page contains the environmental regulations and directives with which NI complies, as well as other environmental information not included in this document.

Waste Electrical and Electronic Equipment (WEEE)

EU Customers At the end of the life cycle, all products *must* be sent to a WEEE recycling center. For more information about WEEE recycling centers and National Instruments WEEE initiatives, visit ni.com/environment/weee.

电子信息产品污染控制管理办法 (中国 RoHS)

National Instruments, NI, ni.com, and LabVIEW are trademarks of National Instruments Corporation. Refer to the *Terms of Use* section on ni.com/legal for more information about National Instruments trademarks. Other product and company names mentioned herein are trademarks or trade names of their respective companies. For patents covering National Instruments products/technology, refer to the appropriate location: **Help**»**Patents** in your software, the patents.txt file on your media, or the *National Instruments Patent Notice* at ni.com/patents.