COMPREHENSIVE SERVICES

We offer competitive repair and calibration services, as well as easily accessible documentation and free downloadable resources.

SELL YOUR SURPLUS

We buy new, used, decommissioned, and surplus parts from every NI series. We work out the best solution to suit your individual needs. Ally Sell For Cash Ally Get Credit Ally Receive a Trade-In Deal

OBSOLETE NI HARDWARE IN STOCK & READY TO SHIP

We stock New, New Surplus, Refurbished, and Reconditioned NI Hardware.

APEX WAVES

Bridging the gap between the manufacturer and your legacy test system.

1-800-915-6216
 www.apexwaves.com
 sales@apexwaves.com

All trademarks, brands, and brand names are the property of their respective owners.

Request a Quote CLICK HERE PCI-5153

CALIBRATION PROCEDURE NI 5152/5153/5154

This document contains instructions for writing an external calibration procedure for National Instruments PXI/PCI-5152/5153/5154 digitizers. This calibration procedure is intended for metrology labs. For more information about calibration, visit ni.com/calibration.

Contents

Conventions	2
Software Requirements	3
Documentation Requirements	4
Password	5
Calibration Interval	5
External Calibration	5
Self-Calibration	5
Test Equipment	5
Test Conditions	7
Calibration Procedures	8
Initial Setup	8
Self-Calibration	8
MAX	9
NI-SCOPE SFP	9
NI-SCOPE	9
Verification	11
Vertical Offset and Vertical Gain Accuracy	11
Programmable Vertical Offset Accuracy (NI 5152 Only)	23
Timing Accuracy	28
Bandwidth	34
Trigger Accuracy	44
Trigger Sensitivity	55
Adjustment	59
Appendix A: Calibration Options	64
Complete Calibration	65
Optional Calibration	66
-	

Appendix B: Calibration Utilities	68
MAX	68
NI-SCOPE	68
Where to Go for Support	69

Conventions

	The following conventions appear in this manual:
»	The » symbol leads you through nested menu items and dialog box options to a final action. The sequence File » Page Setup » Options directs you to pull down the File menu, select the Page Setup item, and select Options from the last dialog box.
	This icon denotes a note, which alerts you to important information.
	This icon denotes a caution, which advises you of precautions to take to avoid injury, data loss, or a system crash.
bold	Bold text denotes items that you must select or click in the software, such as menu items and dialog box options. Bold text also denotes parameter names.
italic	Italic text denotes variables, emphasis, a cross-reference, or an introduction to a key concept. Italic text also denotes text that is a placeholder for a word or value that you must supply.
monospace	Text in this font denotes text or characters that you should enter from the keyboard, sections of code, programming examples, and syntax examples. This font is also used for the proper names of disk drives, paths, directories, programs, subprograms, subroutines, device names, functions, operations, variables, filenames, and extensions.
Platform	Text in this font denotes a specific platform and indicates that the text following it applies only to that platform.

Software Requirements

Calibrating the NI 5152/5153/5154 requires installing the following versions of NI-SCOPE on the calibration system.

Device	NI-SCOPE Version	
NI PXI-5152	3.2 or later	
NI PCI-5152	3.3 or later	
NI PXI/PCI-5153/5154	3.5 or later	

You can download NI-SCOPE from the Instrument Driver Network at ni.com/idnet. NI-SCOPE supports programming the *Self-Calibration* section and *Verification* section in a number of programming languages; however, only LabVIEW and C are supported for the *Adjustment* section.

NI-SCOPE includes all the functions and attributes necessary for calibrating the NI 5152/5153/5154. LabVIEW support is installed in niScopeCal.llb, and all calibration functions appear in the function palette. For LabWindowsTM/CVITM, the NI-SCOPE function panel niScopeCal.fp provides further help on the functions available in CVI. Refer to Table 1 for installed file locations.

Calibration functions are LabVIEW VIs or C function calls in the NI-SCOPE driver. The C function calls are valid for any compiler capable of calling a 32-bit DLL. Many of the functions use constants defined in the niScopeCal.h file. To use these constants in C, you must include niScopeCal.h in your code when you write the calibration procedure.

For more information on the calibration VIs functions, refer to the *NI-SCOPE LabVIEW Reference Help* or the *NI-SCOPE Function Reference Help*. These references can be found in the *NI High-Speed Digitizers Help*. Refer to the *NI-SCOPE Readme* for the installed locations of these documents.

File Name and Location	Description
IVI\Bin\niscope_32.dll	NI-SCOPE driver containing the entire NI-SCOPE API, including calibration functions
IVI\Lib\msc\niscope.lib	NI-SCOPE library for Microsoft C containing the entire NI-SCOPE API, including calibration functions
<labview>\examples\instr\niScope</labview>	Directory of LabVIEW NI-SCOPE example VIs, including self-calibration.
<labview>\instr.lib\niScope\ Calibrate\niScopeCal.llb</labview>	LabVIEW VI library containing VIs for calling the NI-SCOPE calibration API.
IVI\Drivers\niScope\niScopeCal.fp	CVI function panel file that includes external calibration function prototypes and help on using NI-SCOPE in the CVI environment.
IVI\Include\niScopeCal.h	Calibration header file, which you must include in any C program accessing calibration functions. This file automatically includes niScope.h, which defines the rest of the NI-SCOPE interface.
IVI\Drivers\niScope\Examples	Directory of NI-SCOPE examples for CVI, C, Visual C++, and Visual Basic.

Table 1. Calibration File Locations after Installing NI-SCOPE

Documentation Requirements

You may find the following documentation helpful as you write your calibration procedure:

- NI High-Speed Digitizers Getting Started Guide
- NI High-Speed Digitizers Help
- NI PXI/PCI-5152 Specifications
- NI 5153/5154 Specifications
- *NI-SCOPE LabVIEW Reference Help (NI-SCOPE VIs* and *NI-SCOPE Properties)*
- NI-SCOPE Function Reference Help

These documents are installed with NI-SCOPE. You can also download the latest versions from ni.com/manuals.

A password is required to open an external calibration session. If the password has not been changed since manufacturing, the password is NI.

Calibration Interval

External Calibration

The measurement accuracy requirements of your application determine how often you should externally calibrate the NI 5152/5153/5154. NI recommends that you perform a complete external calibration at least once every two years. You can shorten this interval based on the accuracy demands of your application. Refer to *Appendix A: Calibration Options* for more information.

Self-Calibration

Self-calibration can be performed whenever necessary to compensate for environmental changes.

Caution Although you can use self-calibration repeatedly, self-calibrating the NI 5152/5153/5154 more than a few times a day may cause excessive wear on the relays over time.

Test Equipment

Table 2 lists the equipment required for externally calibrating the NI 5152/5153/5154. If you do not have the recommended instruments, use these specifications to select a substitute calibration standard.

Required Equipment	Recommended Equipment		Parameter Measured	Specification
Signal Generator	NI 5152/5153: Fluke 9500B	NI 5154 : Fluke	DC Accuracy	DC ±(0.025% + 25 μV) into 1 MΩ or 50 Ω
	oscilloscope calibrator or Wavetek 9500 with high-stability reference option Fluke 9510 Test Head	9500B/1100 oscilloscope calibrator or Wavetek 9500/1100 with high-stability reference option Fluke 9510 Test Head	Bandwidth, Trigger Sensitivity	NI 5152: $\pm 2\%$ output amplitude flatness for leveled sine wave up to 300 MHz relative to 50 kHz into 50 Ω NI 5153: $\pm 3\%$ output amplitude flatness for leveled sine wave up to 500 MHz relative to 50 kHz into 50 Ω NI 5154: $\pm 4\%$ output amplitude flatness for leveled sine wave up to 1100 MHz relative to 50 kHz into 50 Ω
			Timing	±2 ppm frequency accuracy
	NI 5402 Function Generator or Agilent 33220A Function Generator		Trigger Accuracy	$\pm 5\%$ output amplitude flatness for leveled sine wave up to 10 V _{pk-pk} and 11 MHz relative to 50 kHz into 50 Ω
(3) BNC Cables				50 Ω , identical in length and cable material

Required Equipment	Recommended Equipment	Parameter Measured	Specification
BNC Power Splitter	Mini-Circuits Power Splitter ZSC 2-1+	Trigger Accuracy	Insertion Loss: < 4 dB at 10 MHz Amplitude Imbalance: 0.2 dB
BNC Feedthrough Terminator	Pomona 4119 BNC Feedthrough Terminator	Trigger Accuracy	50 Ω Frequency Range: DC to 10.1 MHz VSWR: 1.1 at 10 MHz

Table 2. Required Equipment Specifications for NI 5152/5153/5154 External Calibration (Continued)

Note The delay times indicated in this procedure apply specifically to the Fluke 9500B/ Wavetek 9500 calibrator. If you use a different instrument, you may need to adjust these delay times.

Test Conditions

Follow these guidelines to optimize the connections and the environment during calibration:

- Always connect the calibrator test head directly to the input BNC of the digitizer, or use a short 50 Ω BNC coaxial cable if necessary. Long cables and wires act as antennae, picking up extra noise that can affect measurements.
- Keep relative humidity between 10 and 90% non-condensing, or consult the digitizer hardware specifications for the optimum relative humidity.
- Maintain an ambient temperature of 23 ± 5 °C.
- Allow a warm-up time of at least 15 minutes after the NI-SCOPE driver is loaded. Unless manually disabled, NI-SCOPE automatically loads with the operating system and enables the device. The warm-up time ensures that the measurement circuitry of the digitizer is at a stable operating temperature.

For PXI digitizers:

- Ensure that the PXI chassis fan speed is set to HIGH, that the fan filters are clean, and that the empty slots contain filler panels. For more information, refer to the *Maintain Forced Air Cooling Note to Users*, which is available at ni.com/manuals.
- Plug the PXI chassis and the calibrator into the same power strip to avoid ground loops.

For PCI digitizers:

Plug the PC and the calibrator into the same power strip to avoid ground loops.

Calibration Procedures

The calibration process includes the following steps.

1. *Initial Setup*—Install the device and configure it in Measurement & Automation Explorer (MAX).

- 2. Self-Calibration—Adjust the self-calibration constants of the device.
- 3. *Verification*—Verify the existing operation of the device. This step confirms whether the device is operating within its specified range prior to calibration.
- 4. *Adjustment*—Perform an external adjustment of the device that adjusts the calibration constants with respect to a known voltage source. The adjustment procedure automatically stores the calibration date on the EEPROM to allow traceability.
- 5. *Reverification*—Repeat the verification procedure to ensure that the device is operating within its specifications after adjustment.

These steps are described in more detail in the following sections.

 \mathbb{N}

Note In some cases, the complete calibration procedure may not be required. Refer to *Appendix A: Calibration Options* for more information.

Initial Setup

Refer to the *NI High-Speed Digitizers Getting Started Guide* for information about how to install the software and hardware, and how to configure the device in MAX.

Self-Calibration

The NI 5152/5153/5154 includes precise internal circuits and references used during self-calibration to adjust for time and temperature drift.

M

Note Allow a 15 minute warm-up period before you begin self-calibration.

Note Self-calibrate the digitizer before you perform verification. NI-SCOPE includes self-calibration example programs for LabVIEW, CVI, and Microsoft Visual C.

You can initiate self-calibration using the following methods:

- MAX
- NI-SCOPE Soft Front Panel (SFP)
- NI-SCOPE

MAX

To initiate self-calibration from MAX, complete the following steps:

- 1. Disconnect or disable any AC inputs to the digitizer.
- 2. Launch MAX.
- 3. Select My System»Devices and Interfaces»NI-DAQmx Devices.
- 4. Select the device that you want to calibrate.
- 5. Initiate self-calibration using one of the following methods:
 - Click **Self-Calibrate** in the upper right corner of MAX.
 - Right-click the name of the device in the MAX configuration tree and select **Self-Calibrate** from the drop-down menu.

NI-SCOPE SFP

To initiate self-calibration from the NI-SCOPE SFP, complete the following steps:

- 1. Disconnect or disable any AC inputs to the digitizer.
- 2. Launch the Scope SFP, which is available at **Start»All Programs»** National Instruments»NI-SCOPE »SCOPE Soft Front Panel
- 3. Select the device you want to calibrate using the Device Configuration dialog box by selecting **Edit**»**Device Configuration**.
- 4. Launch the Calibration dialog box by selecting **Utility**» Self Calibration.
- 5. Click **OK** to begin self-calibration.

NI-SCOPE

To self-calibrate the digitizer programmatically using NI-SCOPE, complete the following steps:

1. Disconnect or disable any AC inputs to the digitizer.

Note Throughout the procedure, refer to the C/C++ function call parameters for the LabVIEW input values.

2. Open a session and obtain a session handle using the niScope Initialize VI.

LabVIEW VI	C/C++ Function Call
resource name ************************************	Call niScope_init with the following parameters: vi: The returned session handle that you use to identify the instrument in all subsequent
id query error out error in	NI-SCOPE driver function calls resourceName: The device name assigned by MAX idQuery: VI_FALSE resetDevice: VI_TRUE

3. Self-calibrate the digitizer using niScope Cal Self Calibrate VI.

LabVIEW VI	C/C++ Function Call
instrument handle channels Option error in	Call niScope_CalSelfCalibrate with the following parameters: sessionHandle: The instrument handle from niScope_init channelList: VI_NULL option: VI_NULL

Note Because the session is a standard session rather than an external calibration session, the new calibration constants are immediately stored in the EEPROM. Therefore, you can include this procedure in any application that uses the digitizer.

4. End the session using the niScope Close VI.

LabVIEW VI	C/C++ Function Call
instrument handle	Call niScope_close with the following parameters: vi: The instrument handle from niScope_init

Verification

Note After the 15 minute warm-up period, always self-calibrate the digitizer before beginning a verification procedure.

This section describes the program you must write to verify the performance of the NI 5152/5153/5154 to either the calibration test limits or the published specifications for the device. Refer to *Appendix A: Calibration Options* to determine which limits to use in these procedures.

Note If any of these tests fail immediately after you perform an external adjustment, make sure that you have met the requirements listed in the *Test Equipment* section and *Test Conditions* section before you return the digitizer to National Instruments for repair.

Vertical Offset and Vertical Gain Accuracy

Table 3 (NI 5152) and Table 4 (NI 5153/5154) contain the input parameters for verifying both vertical offset accuracy and vertical gain accuracy.

To verify vertical offset accuracy, complete the procedures described in the *Vertical Offset Accuracy* section for each of the iterations listed in Table 3 (NI 5152) or Table 4 (NI 5153/5154) for channel 0, then repeat the procedures for channel 1. The *Calibration Test Limits* and *Published Specifications* for vertical offset accuracy are shown in Table 5 (NI 5152) and Table 6 (NI 5153/5154).

To verify vertical gain accuracy, complete the procedures described in the *Vertical Gain Accuracy* section for each of the iterations listed in Table 3 (NI 5152) and Table 4 (NI 5153/5154) for channel 0, then repeat the procedures for channel 1. The *Calibration Test Limits* and *Published Specifications* for vertical gain accuracy are shown in Table 7 (NI 5152) and Table 8 (NI 5153/5154).

Iteration	Input Impedance	Max Input Frequency	Range (V _{pp})
1	50 Ω	300 MHz	0.1
2	50 Ω	300 MHz	0.2
3	50 Ω	300 MHz	0.4
4	50 Ω	300 MHz	1
5	50 Ω	300 MHz	2

Table 3.	NI 5152 Input Parameters for Vertical Offset Accuracy	
	and Vertical Gain Accuracy Verification	

Iteration	Input Impedance	Max Input Frequency	Range (V _{pp})
6	50 Ω	300 MHz	4
7	50 Ω	300 MHz	10
8	50 Ω	20 MHz	0.1
9	50 Ω	20 MHz	0.2
10	50 Ω	20 MHz	0.4
11	50 Ω	20 MHz	1
12	50 Ω	20 MHz	2
13	50 Ω	20 MHz	4
14	50 Ω	20 MHz	10
15	1 MΩ	300 MHz	0.1
16	1 MΩ	300 MHz	0.2
17	1 MΩ	300 MHz	0.4
18	1 MΩ	300 MHz	1
19	1 MΩ	300 MHz	2
20	1 MΩ	300 MHz	4
21	1 MΩ	300 MHz	10
22	1 MΩ	20 MHz	0.1
23	1 MΩ	20 MHz	0.2
24	1 MΩ	20 MHz	0.4
25	1 MΩ	20 MHz	1
26	1 MΩ	20 MHz	2
27	1 MΩ	20 MHz	4
28	1 MΩ	20 MHz	10

 Table 3. NI 5152 Input Parameters for Vertical Offset Accuracy and Vertical Gain Accuracy Verification (Continued)

Iteration	NI 5153 Max Input Frequency	NI 5154 Max Input Frequency	Range (V _{pp})
1	500 MHz	1 GHz	0.1
2	500 MHz	1 GHz	0.2
3	500 MHz	1 GHz	0.5
4	500 MHz	1 GHz	1
5	500 MHz	1 GHz	2
6	500 MHz	1 GHz	5
7	20 MHz	20 MHz	0.1
8	20 MHz	20 MHz	0.2
9	20 MHz	20 MHz	0.5
10	20 MHz	20 MHz	1
11	20 MHz	20 MHz	2
12	20 MHz	20 MHz	5

 Table 4. NI 5153/5154 Input Parameters for Vertical Offset Accuracy and Vertical Gain Accuracy Verification

Vertical Offset Accuracy

Complete the following steps to verify vertical offset accuracy of the NI 5152/5153/5154. You must verify both channels with each iteration listed in Table 3 (NI 5152) or Table 4 (NI 5153/5154).

1. Open a session and obtain a session handle using the niScope Initialize VI.

Note Throughout the procedure, refer to the C/C++ function call parameters for the LabVIEW input values.

LabVIEW VI	C/C++ Function Call
resource name id query J reset device error in	Call niScope_init with the following parameters: resourceName: The device name assigned by MAX idQuery: VI_FALSE resetDevice: VI_TRUE

2. Configure the input impedance and input frequency for the channel using the niScope Configure Chan Characteristics VI.

LabVIEW VI	NI-SCOPE Function Call
instrument handle channels input impedance max input frequency error in	Call niScope_ConfigureChan Characteristics with the following parameters: vi: The instrument handle from niScope_init channelList: "0" inputImpedance: The Input Impedance value listed in Table 3 for the current iteration (NI 5152) or NISCOPE_VAL_50_OHM (NI 5153/5154) maxInputFrequency: The Max Input Frequency value listed in Table 3 (NI 5152) or Table 4 (NI 5153/5154) for
	the current iteration

3. Configure the common vertical properties using the niScope Configure Vertical VI.

LabVIEW VI	NI-SCOPE Function Call
vertical coupling probe attenuation instrument handle channels vertical range vertical offset error in channel enabled	Call niScope_ConfigureVertical with the following parameters: vi: The instrument handle from niScope_init channelList: "0" range: The <i>Range</i> value listed in Table 3 (NI 5152) or Table 4 (NI 5153/5154) for the current iteration
	offset: 0.0 coupling: NISCOPE_VAL_DC probeAttenuation: 1.0 enabled: NISCOPE_VAL_TRUE

4. Configure the horizontal properties using the niScope Configure Horizontal Timing VI.

LabVIEW VI	NI-SCOPE Function Call
enforce realtime number of records instrument handle min sample rate reference position error in min record length	Call niScope_Configure HorizontalTiming with the following parameters: vi: The instrument handle from niScope_init enforceRealtime: NISCOPE_VAL_TRUE numRecords: 1 minSampleRate: 10,000,000 refPosition: 50.0 minNumPts: 100,000

5. Commit all the parameter settings to hardware using the niScope Commit VI.

LabVIEW VI	C/C++ Function Call
instrument handle wat instrument handle out error in error in error out	Call niScope_Commit with the following parameter: vi: The instrument handle from niScope_init

- 6. Short-circuit the channel 0 input of the digitizer by connecting the calibrator test head directly to the digitizer and grounding the output of the calibrator.
- 7. Wait 2,500 ms for the impedance matching of the calibrator to settle.

Note If the calibrator stays shorted, you do not need to repeat steps 6 and 7 for every iteration listed in Table 3 (NI 5152) or Table 4 (NI 5153/5154).

8. Initiate a waveform acquisition using the niScope Initiate Acquisition VI.

LabVIEW VI	C/C++ Function Call	
instrument handle	Call niScope_InitiateAcquisition with the following parameter: vi: The instrument handle from niScope_init	

9. Fetch a waveform from the digitizer and perform a voltage average measurement using the niScope Fetch Measurement (poly) VI. Select the Measurement Scalar DBL instance of the VI.

LabVIEW VI	C/C++ Function Call
	Call niScope_FetchMeasurement with the following parameters:
timeout instrument handle channels scalar measurement error in	<pre>vi: The instrument handle from niScope_init timeout: 1.0 channelList: "0" scalarMeasFunction: NISCOPE_ VAL_VOLTAGE_AVERAGE</pre>

Compare the resulting average voltage to the value listed under the *Calibration Test Limits* or *Published Specifications* column in Table 5 (NI 5152) or Table 6 (NI 5153/5154) that corresponds to the vertical range used. If the result is within the selected test limit, the device has passed this portion of the verification.

 \mathbb{N}

Note The **inputImpedance** and **maxInputFrequency** you configured in step 2 do not affect the test limit value.

10. Repeat steps 2 through 9 for each iteration in Table 3 (NI 5152) or Table 4 (NI 5153/5154).

- 11. Move the calibrator test head to the channel 1 input of the digitizer, and repeat steps 2 through 10 for every configuration in Table 3 (NI 5152) or Table 4 (NI 5153/5154), changing the value of the channelList parameter from "0" to "1".
- 12. End the session using the niScope Close VI.

LabVIEW VI	C/C++ Function Call
instrument handle ••••••••••••••••••••••••••••••••••••	Call niScope_close with the following parameters: vi: The instrument handle from niScope_init

You have finished verifying the vertical offset accuracy of the NI 5152/5153/5154.

Table 5.	NI 5152 Vert	tical Offset Calibration	Test Limits and	Published Specifications
----------	--------------	--------------------------	-----------------	--------------------------

Range	Calibration Test Limits (V)		Published Specification (V)	
(V _{pp})	Positive	Negative	Positive	Negative
0.1	0.0006	-0.0006	0.0015	-0.0015
0.2	0.0012	-0.0012	0.0025	-0.0025
0.4	0.0024	-0.0024	0.0045	-0.0045
1	0.006	-0.006	0.0105	-0.0105
2	0.012	-0.012	0.025	-0.025
4	0.024	-0.024	0.045	-0.045
10	0.06	-0.06	0.105	-0.105

Table 6. NI 5153/5154 Vertical Offset Calibration Test Limits and Published Specifications

Range (V _{pp})	Calibration Test Limits (V)		Published Specification (V)		
	Positive	Negative	Positive	Negative	
0.1	0.00166	-0.00166	0.0018	-0.0018	
0.2	0.00331	-0.00331	0.0036	-0.0036	
0.5	0.00829	-0.00829	0.009	-0.009	
1	0.0166	-0.0166	0.018	-0.018	

Range (V _{pp})	Calibration Test Limits (V)		Published Specification (V)		
	Positive	Negative	Positive	Negative	
2	0.0331	-0.0331	0.036	-0.036	
5	0.0829	-0.0829	0.09	-0.09	

 Table 6.
 NI 5153/5154 Vertical Offset Calibration Test Limits and Published Specifications (Continued)

Vertical Gain Accuracy

Complete the following steps to verify the vertical gain accuracy of the NI 5152/5153/5154. You must verify both channels with each iteration listed in Table 3 (NI 5152) or Table 4 (NI 5153/5154).

1. Open a session and obtain a session handle using the niScope Initialize VI.

LabVIEW VI	C/C++ Function Call
resource name	Call niScope_init with the following parameters: resourceName: The device name assigned by MAX idQuery: VI_FALSE resetDevice: VI_TRUE

2. Configure the input impedance and input frequency for the channel using the niScope Configure Chan Characteristics VI.

LabVIEW VI	NI-SCOPE Function Call
instrument handle channels input impedance max input frequency error in	Call niScope_ConfigureChan Characteristics with the following parameters: vi: The instrument handle from niScope_init channelList: "0" inputImpedance: The <i>Input Impedance</i> value listed in Table 3 for the current iteration (NI 5152) or NISCOPE_VAL_50_OHM (NI 5153/5154) maxInputFrequency: The <i>Max Input Frequency</i> value listed in Table 3 (NI 5152) or Table 4 (NI 5153/5154) for the current iteration

3. Configure the common vertical properties using the niScope Configure Vertical VI.

LabVIEW VI	C/C++ Function Call
vertical coupling probe attenuation instrument handle channels vertical offset error in channel enabled	Call niScope_ConfigureVertical with the following parameters: vi: The instrument handle from niScope_init coupling: NISCOPE_VAL_DC probeAttenuation: 1.0 channelList: "0" range: The <i>Range</i> value listed in Table 3 (NI 5152) or Table 4 (NI 5153/5154) for the current iteration offset: 0.0 enabled: NISCOPE_VAL_TRUE

4. Configure the horizontal properties using the niScope Configure Horizontal Timing VI.

LabVIEW VI	NI-SCOPE Function Call
enforce realtime number of records instrument handle min sample rate reference position error in min record length	Call niScope_Configure HorizontalTiming with the following parameters: vi: The instrument handle from niScope_init enforceRealtime: NISCOPE_VAL_TRUE numRecords: 1 minSampleRate: 10,000,000 refPosition: 50.0 minNumPts: 100,000

5. Commit all the parameter settings to hardware using the niScope Commit VI.

LabVIEW VI	C/C++ Function Call
instrument handle ••••••••••••••••••••••••••••••••••••	Call niScope_Commit with the following parameter: vi: The instrument handle from niScope_init

- 6. Connect the calibrator test head directly to the channel 0 input of the digitizer and output the *Positive Input (V)* in Table 7 (NI 5152) or Table 8 (NI 5153/5154) that corresponds to the vertical range used. Be sure to configure the load impedance of the calibrator to match the input impedance of the digitizer.
- 7. Wait 2,500 ms for the impedance matching of the calibrator to settle.
- 8. Initiate a waveform acquisition using the niScope Initiate Acquisition VI.

LabVIEW VI	C/C++ Function Call
instrument handle	Call niScope_InitiateAcquisition with the following parameter: vi: The instrument handle from niScope_init

9. Fetch a waveform from the digitizer and perform a voltage average measurement using the niScope Fetch Measurement (poly) VI. Select the Measurement Scalar DBL instance of the VI. The resulting value is the *Measured Positive Input Voltage* used in step 14.

LabVIEW VI	C/C++ Function Call	
timeout instrument handle channels scalar measurement error in	Call niScope_FetchMeasurement with the following parameters:	
	vi: The instrument handle from	
	niScope_init timeout : 1.0	
	scalarMeasFunction: NISCOPE_	
	VAL_VOLTAGE_AVERAGE	

- 10. Using the calibrator, output the *Negative Input Voltage* listed in Table 7 (NI 5152) or Table 8 (NI 5153/5154) that corresponds to the vertical range used.
- 11. Wait 2,500 ms for the impedance matching of the calibrator to settle.

12. Initiate a waveform acquisition using the niScope Initiate Acquisition VI.

LabVIEW VI	C/C++ Function Call
instrument handle	Call niScope_InitiateAcquisition with the following parameter: vi: The instrument handle from niScope_init

13. Fetch a waveform from the digitizer and perform a voltage average measurement using the niScope Fetch Measurement (poly) VI. Select the Measurement Scalar DBL instance of the VI. The resulting value is the *Measured Negative Input Voltage* used in step 14.

LabVIEW VI	C/C++ Function Call	
timeout instrument handle channels scalar measurement error in	Call niScope_FetchMeasurement with the following parameters:	
	<pre>vi: The instrument handle from niScope_init timeout: 1.0 chameU int #0#</pre>	
	VAL_VOLTAGE_AVERAGE	

14. Calculate the error in the vertical gain as a percentage of input using the following formula:

$$error = \left(\left(\frac{a-b}{c-d} \right) - 1 \right) \times 100$$

where

- *a* = the *Measured Positive Input Voltage*
- *b* = the *Measured Negative Input Voltage*
- *c* = the applied *Positive Input Voltage*

d = the applied *Negative Input Voltage*

Compare the resulting percent error to the *Calibration Test Limits* or the *Published Specifications* listed in Table 7 (NI 5152) or Table 8 (NI 5153/5154). If the result is within the selected test limit, the device has passed this portion of the verification.

15. Repeat steps 2 through 14 for each iteration in Table 3 (NI 5152) or Table 4 (NI 5153/5154).

- 16. Move the calibrator test head to the digitizer input channel 1 and repeat steps 2 through 15 for every configuration in Table 3 (NI 5152) or Table 4 (NI 5153/5154), changing the value of the **channelList** parameter from "0" to "1".
- 17. End the session using the niScope Close VI.

_	Positive	Negative	Calibration Test Limits		Published Specifications	
Range (V)	Input (V)	ut Input) (V)	Positive	Negative	Positive	Negative
0.1	0.045	-0.045	1.00%	-1.00%	1.26%	-1.26%
0.2	0.09	-0.09	1.00%	-1.00%	1.26%	-1.26%
0.4	0.18	-0.18	1.00%	-1.00%	1.26%	-1.26%
1	0.45	-0.45	1.00%	-1.00%	1.26%	-1.26%
2	0.9	-0.9	1.00%	-1.00%	1.26%	-1.26%
4	1.8	-1.8	1.00%	-1.00%	1.26%	-1.26%
10	4.5	-4.5	1.00%	-1.00%	1.26%	-1.26%

 Table 7. NI 5152 Vertical Gain Stimuli, Calibration Test Limits, and Published Specifications

 Table 8.
 NI 5153/5154 Vertical Gain Stimuli, Calibration Test Limits, and Published Specifications

	Positive	Negative	Calibration Test Limits		Published Specifications	
Range (V _{pp})	Input (V)	Input (V)	Positive	Negative	Positive	Negative
0.1	0.045	-0.045	1.025%	-1.025%	2.200%	-2.200%
0.2	0.09	-0.09	1.025%	-1.025%	2.200%	-2.200%
0.5	0.225	-0.225	1.025%	-1.025%	2.200%	-2.200%
1	0.45	-0.45	1.025%	-1.025%	2.200%	-2.200%

Table 6. IN 5155/5154 Ventical Gain Sumuli, Gaiblation Test Linnis, and Fublished Specifications (Continued)						
D	Positive	Negative	Calibration Test Limits		Published S	pecifications
Range (V _{pp})	Input (V)	Input (V)	Positive	Negative	Positive	Negative
2	0.9	-0.9	1.732%	-1.732%	2.900%	-2.900%
5	2.25	-2.25	1.732%	-1.732%	2.900%	-2.900%

Table 8 NI 5153/5154 Vertical Gain Stimuli, Calibration Test Limits, and Published Specifications (Continued)

You have finished verifying the vertical gain accuracy of the NI 5152/5153/5154.

Programmable Vertical Offset Accuracy (NI 5152 Only)

Complete the following steps to verify the programmable vertical offset accuracy for each NI 5152 channel.

Open a session and obtain a session handle using the niScope 1. Initialize VI.

LabVIEW VI	C/C++ Function Call
resource name instrument handle id query	Call niScope_init with the following parameters: resourceName: The device name assigned by MAX idQuery: VI_FALSE resetDevice: VI_TRUE

2. Configure the input impedance and the maximum input frequency using the niScope Configure Chan Characteristics VI.

LabVIEW VI	C/C++ Function Call
instrument handle channels	Call niScope_ConfigureChan Characteristics with the following parameters:
	vi: The instrument handle from
input impedance	niScope_init
error in	channelList: "0"
	inputImpedance:
	NISCOPE_VAL_1_MEG_OHM
	maxInputFrequency: 20,000,000

3. Configure the common vertical properties using the niScope Configure Vertical VI.

LabVIEW VI	C/C++ Function Call
	Call niScope_ConfigureVertical with the following parameters:
vertical coupling probe attenuation instrument handle channels vertical range vertical offset error in channel enabled	<pre>vi: The instrument handle from niScope_init coupling: NISCOPE_VAL_DC probeAttenuation: 1.0 channelList: "0" range: The Range value listed in Table 9 for the current iteration offset: The Positive Offset value listed in Table 9 for the current iteration anabled: NISCOPE_VAL_EDUE</pre>

4. Configure the horizontal properties using the niScope Configure Horizontal Timing VI.

LabVIEW VI	C/C++ Function Call
enforce realtime number of records instrument handle min sample rate reference position error in error in min record length	Call niScope_Configure HorizontalTiming with the following parameters: vi: The instrument handle from niScope_init enforceRealtime: NISCOPE_VAL_TRUE numRecords: 1 minSampleRate: 10,000,000 refPosition: 50.0 minNumPts: 100,000

5. Commit all the parameter settings to hardware using the niScope Commit VI.

LabVIEW VI	C/C++ Function Call
instrument handle and a second s	Call niScope_Commit with the following parameter: vi: The instrument handle from niScope_init

- 6. Connect the calibrator test head directly to the channel 0 input of the digitizer.
- 7. Output the *Positive Offset* voltage listed in Table 9 for the current iteration with a 1 M Ω load impedance.
- 8. Wait 2,500 ms for the impedance matching of the calibrator to settle.
- 9. Initiate a waveform acquisition using the niScope Initiate Acquisition VI.

LabVIEW VI	C/C++ Function Call
instrument handle	Call niScope_Initiate Acquisition with the following parameter: vi: The instrument handle from niScope_init

10. Fetch a waveform from the digitizer and perform a voltage average measurement using the niScope Fetch Measurement (poly) VI. Select the Measurement Scalar DBL instance of the VI. The resulting value is the *Measured Positive Input Voltage* used in step 17.

LabVIEW VI	C/C++ Function Call
	Call niScope_FetchMeasurement with the following parameters:
timeout	vi: The instrument handle from
channels result scalar measurement	niScope_init
	timeout : 1.0
	channelList: "0"
	scalarMeasFunction: NISCOPE_
	VAL_VOLTAGE_AVERAGE
timeout instrument handle channels scalar measurement error in	<pre>vi: The instrument handle from niScope_init timeout: 1.0 channelList: "0" scalarMeasFunction: NISCOPE_ VAL_VOLTAGE_AVERAGE</pre>

11. Configure the common vertical properties using the niScope Configure Vertical VI.

LabVIEW VI	C/C++ Function Call
	Call niScope_ConfigureVertical with the following parameters:
vertical coupling probe attenuation instrument handle vertical range vertical offset error in channel enabled	<pre>vi: The instrument handle from niScope_init coupling: NISCOPE_VAL_DC probeAttenuation: 1.0 channelList: "0" range: The Range value listed in Table 9 for the current iteration offset: The Negative Offset value listed in Table 9 for the current iteration enabled: NISCOPE VAL TRUE</pre>

12. Commit all the parameter settings to hardware using the niScope Commit VI.

LabVIEW VI	C/C++ Function Call
instrument handle	Call niScope_Commit with the following parameter: vi: The instrument handle from niScope_init

- 13. With the calibrator, output the *Negative Offset* voltage listed in Table 9 for the current iteration, with a 1 M Ω load impedance.
- 14. Wait 2,500 ms for the impedance matching of the calibrator to settle.
- 15. Initiate a waveform acquisition using the niScope Initiate Acquisition VI.

LabVIEW VI	C/C++ Function Call
instrument handle	Call niScope_InitiateAcquisition with the following parameter: vi: The instrument handle from niScope_init

16. Fetch a waveform from the digitizer and perform a voltage average measurement using the niScope Fetch Measurement (poly) VI. Select

the Measurement Scalar DBL instance of the VI. The resulting value is the *Measured Negative Input Voltage* used in step 17.

LabVIEW VI	C/C++ Function Call
timeout instrument handle channels scalar measurement error in	Call niScope_FetchMeasurement with the following parameters:
	vi: The instrument handle from
	niScope_init
	timeout : 1.0
	channelList: "0"
	scalarMeasFunction: NISCOPE_
	VAL_VOLTAGE_AVERAGE

17. Calculate the error in the programmable vertical offset as a percentage of input using the formula:

$$error = \left(\left(\frac{a-b}{c-d} \right) - 1 \right) \times 100$$

where

a = the *Measured Positive Input Voltage*

- *b* = the *Measured Negative Input Voltage*
- c = the applied *Positive Offset*
- d = the applied Negative Offset

Compare the resulting percent to the *Calibration Test Limits* or the *Published Specifications* listed in Table 9. If the result is within the selected test limit, the device has passed this portion of the verification.

- 18. Repeat steps 2 through 17 for each iteration in Table 9.
- 19. Move the calibrator test head to the channel 1 input of the digitizer and repeat steps 2 through 18, changing the **channelList** parameter from "0" to "1".
- 20. End the session using the niScope Close VI.

LabVIEW VI	C/C++ Function Call
instrument handle	Call niScope_close with the following parameters: vi: The instrument handle from niScope_init

You have finished verifying the programmable vertical offset accuracy of the NI 5152.

	Range	Positive Offset	Negative Offset	Calibra Liı	tion Test nits	Publ Specifi	ished cations
Iteration	(V _{pp})	(V)	(V)	Positive	Negative	Positive	Negative
1	0.1	0.9	-0.9	0.8%	-0.8%	0.9%	-0.9%
2	0.2	0.9	-0.9	0.8%	-0.8%	0.9%	-0.9%
3	0.4	0.9	-0.9	0.8%	-0.8%	0.9%	-0.9%
4	1	0.9	-0.9	0.8%	-0.8%	0.9%	-0.9%
5	2	9	-9	0.8%	-0.8%	0.9%	-0.9%
6	4	9	-9	0.8%	-0.8%	0.9%	-0.9%
7	10	9	-9	0.8%	-0.8%	0.9%	-0.9%

Table 9. NI 5152 Programmable Vertical Offset Accuracy Limits

Timing Accuracy

Complete the following steps to verify the timing accuracy for the NI 5152/5153/5154.

1. Open a session and obtain a session handle using the niScope Initialize VI.

LabVIEW VI	C/C++ Function Call
resource name	Call niScope_init with the following parameters: resourceName: The device name assigned by MAX idQuery: VI_FALSE resetDevice: VI_TRUE

2. Configure the input impedance and the maximum input frequency using the niScope Configure Chan Characteristics VI.

LabVIEW VI	C/C++ Function Call	
instrument handle channels input impedance error in error in	Call niScope_ConfigureChan Characteristics with the following parameters: vi: The instrument handle from niScope_init channelList: "0" inputImpedance: NISCOPE_VAL_50_OHM maxInputFrequency: 20,000,000	

3. Configure the common vertical properties using the niScope Configure Vertical VI.

LabVIEW VI	C/C++ Function Call
vertical coupling probe attenuation instrument handle channels vertical range vertical offset error in channel enabled	Call niScope_Configure Vertical with the following parameters: coupling: NISCOPE_VAL_DC probeAttenuation: 1.0 vi: The instrument handle from niScope_init channelList: "0" range: 2.0 offset: 0.0 enabled: NISCOPE_VAL_TRUE

4. Configure the horizontal properties using the niScope Configure Horizontal Timing VI.

LabVIEW VI	C/C++ Function Call
enforce realtime number of records instrument handle min sample rate reference position error in min record length	Call niScope_Configure HorizontalTiming with the following parameters: enforceRealtime: NISCOPE_VAL_TRUE numRecords: 1 vi: The instrument handle from niScope_init minSampleRate: 250,000,000 refPosition: 50.0 minNumPts: 2,500,000

5. Commit all the parameter settings to hardware using the niScope Commit VI.

LabVIEW VI	C/C++ Function Call
instrument handle	Call niScope_Commit with the following parameter: vi: The instrument handle from niScope_init

- 6. Connect the scope calibrator test head directly to the channel 0 input of the digitizer. Configure the calibrator to output an exact 11 MHz sine wave with 1 V_{pk-pk} amplitude and 50 Ω load impedance.
- 7. Wait 2,500 ms for the impedance matching and frequency of the calibrator to settle.
- 8. Read the last external cal temperature using the niScope Cal Fetch Temperature VI.

LabVIEW VI	C/C++ Function Call	
instrument handle which temperature error in error in which temperature (Celsius)	Call niScope_CalFetchTemperature with the following parameter: whichTemperature: External Calibration	

9. Read Device Temperature using the niScope Property Node.

LabVIEW VI	C/C++ Function Call	
reference I/O error in (no error) Device Temperature Device Temperature Device Temperature	Call niScope_SetAttribute ViBoolean with the following parameters: vi: The instrument handle from niScope_init attributeID: NISCOPE_ATTR_TEMPERATURE	

10. Initiate a waveform acquisition using the niScope Initiate Acquisition VI.

LabVIEW VI	C/C++ Function Call	
instrument handle ************************************	Call niScope_InitiateAcquisition with the following parameter: vi: The instrument handle from niScope_init	

11. Retrieve a waveform using the niScope Fetch (poly) VI. Select the WDT instance of the VI. Use the default value (absolute) for the **timestamp Type** parameter.

LabVIEW VI	C/C++ Function Call
timestamp type timeout instrument handle out channels numSamples error in	Call niScope_Fetch with the following parameter: vi: The instrument handle from niScope_init channelList: "0" timeout: 5.0 numsamples: -1

- 12. Measure the exact frequency of the peak around 11 MHz using the Extract Single Tone Information VI with the following inputs.
 - advanced search»approx freq.: -1
 - advanced search»search: 5
 - export signals: 0 (none)

13. Calculate the error in timing as parts per million (ppm) using the following formula:

error = (a - 11,000,000) / 11

where a = the measured frequency

14. Calculate the *Calibration Test Limits* as parts per million (ppm) using the following formula:

$$CalibrationTestLimits(ppm) = \begin{pmatrix} 30, TempDelta < 3^{\circ}C \\ 7 \times (TempDelta - 3) + 30, TempDelta \ge 3^{\circ}C \end{pmatrix}$$

where

TempDelta °C = | *Device Temperature* °C – *Last external cal temperature* °C |

Compare the result to the Calibration *Test Limits* or the *Published Specifications* listed in Table 11. If the result is within the selected test limit, the device has passed this portion of the verification.

Device	Calibration Test Limit	Published Specification
NI 5152	+/- Calibration Test Limits	Timebase Accuracy : ±30 ppm within ±3 °C of external calibration temperature Timebase Drift : ±7 ppm per °C
NI 5153/5154	+/- Calibration Test Limits	Timebase Accuracy : ±30 ppm within ±3 °C of external calibration temperature Timebase Drift : ±7 ppm per °C

Table 10. NI 5152/5152/5154 Timing Error

Note The same time source is used for both channel 0 and channel 1, so you only need to verify the timing accuracy on one channel.

15. End the session using the niScope Close VI.

LabVIEW VI	C/C++ Function Call
instrument handle	Call niScope_close with the following parameters: vi: The instrument handle from niScope_init

You have finished verifying the timing accuracy of the NI 5152/5153/5154.

Table 11. Timing Accuracy

Device	Calibration Test Limit	Published Specification
NI 5152	18.5 ppm	25 ppm
NI 5153/5154	18.5 ppm	30 ppm

Bandwidth

Complete the following steps to verify the bandwidth of the NI 5152/5153/5154. You must verify both channels with each iteration listed in Table 12 (NI 5152), Table 13 (NI 5153), or Table 14 (NI 5154).

1. Open a session and obtain a session handle using the niScope Initialize VI.

LabVIEW VI	C/C++ Function Call
resource name id query reset device error in	Call niScope_init with the following parameters: resourceName: The device name assigned by MAX idQuery: VI_FALSE resetDevice: VI_TRUE

2. Configure the input impedance and the maximum input frequency using the niScope Configure Chan Characteristics VI.

LabVIEW VI	C/C++ Function Call
	Call niScope_ConfigureChan Characteristics with the following parameters: vi: The instrument handle from niScope_init
instrument handle out channels input impedance max input frequency error in	channelList: "0" inputImpedance: The <i>Input Impedance</i> value from Table 12 (NI 5152), Table 13 (NI 5153), or Table 14 (NI 5154) for the current iteration maxInputFrequency : The <i>Max Input</i> <i>Frequency</i> value listed in Table 12 (NI 5152), Table 13 (NI 5153), or Table 14 (NI 5154) for the current iteration

3. Configure the common vertical properties using the niScope Configure Vertical VI.

LabVIEW VI	C/C++ Function Call
	Call niScope_ConfigureVertical with the following parameters:
	vi: The instrument handle from
vertical coupling	niScope_init
instrument handle	coupling: NISCOPE_VAL_DC
channels d and a strong out	probeAttenuation: 1.0
vertical offset	channelList: "0"
error in	range: The <i>Range</i> value listed in Table 12
channel enabled	(NI 5152), Table 13 (NI 5153), or Table 14
	(NI 5154) for the current iteration
	offset: 0.0
	enabled: NISCOPE_VAL_TRUE

4. Configure the horizontal properties using the niScope Configure Horizontal Timing VI.

LabVIEW VI	C/C++ Function Call
enforce realtime number of records instrument handle min sample rate reference position error in min record length	Call niScope_Configure HorizontalTiming with the following parameters: enforceRealtime: NISCOPE_VAL_TRUE numRecords: 1 vi: The instrument handle from niScope_init minSampleRate: 10,000,000 refPosition: 50.0 minNumPts: 30,000

5. Commit all the parameter settings to hardware using the niScope Commit VI.

LabVIEW VI	C/C++ Function Call
instrument handle ••••••••••••••••••••••••••••••••••••	Call niScope_Commit with the following parameter: vi: The instrument handle from niScope_init

6. Connect the scope calibrator test head directly to the channel 0 input of the digitizer. Configure the calibrator to output a 51 kHz sine wave with peak-to-peak voltage amplitude set to *Input Voltage* listed in Table 12 (NI 5152), Table 13 (NI 5153), or Table 14 (NI 5154).

Configure the load impedance of the calibrator to match the input impedance of the digitizer.

- 7. Wait 2,500 ms for the impedance matching and frequency of the calibrator to settle.
- 8. Initiate a waveform acquisition using the niScope Initiate Acquisition VI.

LabVIEW VI	C/C++ Function Call
instrument handle ************************************	Call niScope_InitiateAcquisition with the following parameter: vi: The instrument handle from niScope_init

9. Fetch a waveform from the digitizer and perform a voltage RMS measurement using the niScope Fetch Measurement (poly) VI. Select the Measurement Scalar DBL instance of the VI. The resulting value is the *Measured RMS Voltage of 51 kHz Sine Wave* used in step 17.

LabVIEW VI	C/C++ Function Call
timeout instrument handle channels scalar measurement error in	Call niScope_FetchMeasurement with the following parameters:
	vi: The instrument handle from
	niScope_init
	timeout: 1.0
	channelList: "0"
	scalarMeasFunction:
	NISCOPE_VAL_VOLTAGE_RMS

10. Configure the horizontal properties using the niScope Configure Horizontal Timing VI.

LabVIEW VI	C/C++ Function Call
enforce realtime number of records instrument handle min sample rate reference position error in min record length	Call niScope_Configure HorizontalTiming with the following parameters: vi: The instrument handle from niScope_init
	enforceRealtime: NISCOPE_VAL_TRUE numRecords: 1 minSampleRate: The <i>Sample Rate</i> value listed in Table 12 (NI 5152), Table 13 (NI 5153), or Table 14 (NI 5154) for the
	current iteration refPosition: 50.0 minNumPts: 300,000

11. Set Time Interleaved Sampling using the niScope Property Node.

LabVIEW VI	C/C++ Function Call
reference TO error in (no error) FTT Active Channel Active Channel Horizontal:Enable Time Interleaved Sampling TTT	Call niScope_SetAttribute ViBoolean with the following parameters: vi: The instrument handle from niScope_init channelList: "0" attributeID: NISCOPE_ATTR_ ENABLE_TIME_INTERLEAVED_ SAMPLING value: The <i>TIS Enabled</i> value listed in Table 12 (NI 5152), Table 13 (NI 5153), or Table 14 (NI 5154) for the current iteration

12. Commit all the parameter settings to hardware using the niScope Commit VI.

LabVIEW VI	C/C++ Function Call
instrument handle	Call niScope_Commit with the following parameter: vi: The instrument handle from niScope_init

- 13. Configure the calibrator to output the *Input Frequency* listed in Table 12 (NI 5152), Table 13 (NI 5153), or Table 14 (NI 5154) for the current iteration.
- 14. Wait 2,500 ms for the impedance matching of the calibrator to settle.
- 15. Initiate a waveform acquisition using the niScope Initiate Acquisition VI.

LabVIEW VI	C/C++ Function Call
instrument handle	Call niScope_Initiate Acquisition with the following parameter: vi: The instrument handle from niScope_init

16. Fetch a waveform from the digitizer and perform a voltage RMS measurement using the niScope Fetch Measurement (poly) VI. Select the Measurement Scalar DBL instance of the VI. The resulting value is the *Measured RMS Voltage of Generated Sine Wave* used in step 17.

LabVIEW VI	C/C++ Function Call
tmeout	Call niScope_FetchMeasurement with the following parameters: vi: The instrument handle from
channels channels scalar measurement error in and scalar measurement error	niScope_init timeout: 1.0
	channelList: "0" scalarMeasFunction:
	NISCOPE_VAL_VOLTAGE_RMS

17. Calculate the power difference using the following formula:

$$power = (20log_{10} a) - (20log_{10} b)$$

where

a = the *Measured RMS Voltage of Generated Sine Wave*

b = the *Measured RMS Voltage of 51 kHz Sine Wave*

If the result is within the test limits in Table 12 (NI 5152), Table 13 (NI 5153), or Table 14 (NI 5154), the device has passed this portion of the verification.

18. Disable Time Interleaved Sampling using the niScope Property Node.

LabVIEW VI	C/C++ Function Call
reference IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Call niScope_SetAttribute ViBoolean with the following parameters: vi: The instrument handle from niScope_init channelList: "0" attributeID: NISCOPE_ATTR_ ENABLE_TIME_INTERLEAVED_ SAMPLING value: NISCOPE_VAL_FALSE

- 19. Repeat steps 2 through 18 for each iteration in Table 12 (NI 5152), Table 13 (NI 5153), or Table 14 (NI 5154).
- 20. Move the calibrator test head to the channel 1 input of the digitizer and repeat steps 2 through 19. changing value of the **channelList** parameter from "0" to "1".
- 21. End the session using the niScope Close VI.

LabVIEW VI	C/C++ Function Call
instrument handle	Call niScope_close with the following parameters: vi: The instrument handle from niScope_init

You have finished verifying the bandwidth of the NI 5152/5153/5154.

		May Innut		Innut	Innut			Published	Specifications
Iteration	Input Impedance	Frequency (MHz)	Range (V _{pp})	Frequency (MHz)	Voltage (V _{pp})	TIS Enabled	Sample Rate	Max Level (dB)	Min Level (dB)
1	50 Ω	300	0.1	135	0.05	NISCOPE_ VAL_FALSE	1 GS/s	N/A	-3
2	50 Ω	300	0.2	301	0.1	NISCOPE_ VAL_FALSE	1 GS/s	N/A	-3
3	50 Ω	300	0.4	301	0.2	NISCOPE_ VAL_FALSE	1 GS/s	N/A	-3
4	50 Ω	300	1	301	0.5	NISCOPE_ VAL_FALSE	1 GS/s	N/A	-3
5	50 Ω	300	2	301	1	NISCOPE_ VAL_FALSE	1 GS/s	N/A	-3
6	50 Ω	300	4	301	2	NISCOPE_ VAL_FALSE	1 GS/s	N/A	-3
7	50 Ω	300	10	301	5	NISCOPE_ VAL_FALSE	1 GS/s	N/A	-3
8	1 MΩ	300	0.1	110	0.05	NISCOPE_ VAL_FALSE	1 GS/s	N/A	-3
9	1 MΩ	300	0.2	260	0.1	NISCOPE_ VAL_FALSE	1 GS/s	N/A	-3
10	1 MΩ	300	0.4	260	0.2	NISCOPE_ VAL_FALSE	1 GS/s	N/A	-3
11	1 MΩ	300	1	260	0.5	NISCOPE_ VAL_FALSE	1 GS/s	N/A	-3
12	1 MΩ	300	2	260	1	NISCOPE_ VAL_FALSE	1 GS/s	N/A	-3

Table 12. NI 5152 Bandwidth Stimuli and Limits

		May Innut		Innut	Input			Published	Specifications
Iteration	Input Impedance	Frequency (MHz)	Range (V _{pp})	Frequency (MHz)	Voltage (V _{pp})	TIS Enabled	Sample Rate	Max Level (dB)	Min Level (dB)
13	1 MΩ	300	4	260	2	NISCOPE_ VAL_FALSE	1 GS/s	N/A	-3
14	1 MΩ	300	10	260	5	NISCOPE_ VAL_FALSE	1 GS/s	N/A	-3
15	50 Ω	20	1	18.8	0.5	NISCOPE_ VAL_FALSE	1 GS/s	N/A	-3*
16	50 Ω	20	1	21.8	0.5	NISCOPE_ VAL_FALSE	1 GS/s	-2.5*	N/A
* Published specific	* Published specifications value listed for validation of noise filter only. The specification is not included in the device specifications document.								

		May Input		Innut	Innut			Published S	pecifications
Iteration	Input Impedance	Frequency (MHz)	Range (V _{pp})	Frequency (MHz)	Voltage (V _{pp})	TIS Enabled	Sample Rate	Max Level (dB)	Min Level (dB)
1	50 Ω	500 MHz	0.1	501	0.05	NISCOPE_ VAL_FALSE	1 GS/s	N/A	-3
2	50 Ω	500 MHz	0.1	501	0.05	NISCOPE_ VAL_TRUE	2 GS/s	N/A	-3
3	50 Ω	500 MHz	0.2	501	0.1	NISCOPE_ VAL_FALSE	1 GS/s	N/A	-3
4	50 Ω	500 MHz	0.5	501	0.25	NISCOPE_ VAL_FALSE	1 GS/s	N/A	-3
5	50 Ω	500 MHz	1	501	0.5	NISCOPE_ VAL_FALSE	1 GS/s	N/A	-3
6	50 Ω	500 MHz	2	501	1.0	NISCOPE_ VAL_FALSE	1 GS/s	N/A	-3
7	50 Ω	500 MHz	2	501	1.0	NISCOPE_ VAL_TRUE	2 GS/s	N/A	-3
8	50 Ω	500 MHz	5	501	2.5	NISCOPE_ VAL_FALSE	1 GS/s	N/A	-3
9	50 Ω	20 MHz	2	19.1	1.0	NISCOPE_ VAL_FALSE	1 GS/s	N/A	-3*
10	50 Ω	20 MHz	2	21.1	1.0	NISCOPE_ VAL_FALSE	1 GS/s	-2.5*	N/A

 Table 13.
 NI 5153 Bandwidth Stimuli and Limits

Iteration 1	Input Impedance	Max Input	D						
1		Frequency	(V _{pp})	Input Frequency	Voltage (V _{pp})	TIS Enabled	Sample Rate	Max Level (dB)	Min Level (dB)
	50 Ω	1 GHz	0.1	1.001 GHz	0.05	NISCOPE_ VAL_FALSE	1 GS/s	N/A	-3
2	50 Ω	1 GHz	0.1	1.001 GHz	0.05	NISCOPE_ VAL_TRUE	2 GS/s	N/A	-3
3	50 Ω	1 GHz	0.2	1.001 GHz	0.1	NISCOPE_ VAL_FALSE	1 GS/s	N/A	-3
4	50 Ω	1 GHz	0.5	1.001 GHz	0.25	NISCOPE_ VAL_FALSE	1 GS/s	N/A	-3
5	50 Ω	1 GHz	1	1.001 GHz	0.5	NISCOPE_ VAL_FALSE	1 GS/s	N/A	-3
6	50 Ω	1 GHz	2	1.001 GHz	1.0	NISCOPE_ VAL_FALSE	1 GS/s	N/A	-3
7	50 Ω	1 GHz	2	1.001 GHz	1.0	NISCOPE_ VAL_TRUE	2 GS/s	N/A	-3
8	50 Ω	1 GHz	5	1.001 GHz	2.5	NISCOPE_ VAL_FALSE	1 GS/s	N/A	-3
9	50 Ω	20 MHz	2	19.1 MHz	1.0	NISCOPE_ VAL_FALSE	1 GS/s	N/A	-3*
10	50 Ω	20 MHz	2	21.1 MHz	1.0	NISCOPE_ VAL_FALSE	1 GS/s	-2.5*	N/A

Table 14. NI 5154 Bandwidth Stimuli and Limits

NI 5450 Calibration Procedure

Trigger Accuracy

Complete the following steps to verify the trigger accuracy for channel 0, channel 1, and the external trigger channel of the NI 5152/5153/5154.

1. Open a session and obtain a session handle using the niScope Initialize VI.

LabVIEW VI	C/C++ Function Call
resource name	Call niScope_init with the following parameters: resourceName: The device name assigned by MAX idQuery: VI_FALSE resetDevice: VI_TRUE

2. Configure the input impedance and the maximum input frequency using the niScope Configure Chan Characteristics VI.

LabVIEW VI	C/C++ Function Call
	Call niScope_ConfigureChan Characteristics with the following parameters:
	vi: The instrument handle from
· · · · · · · · · · · · · · · · · · ·	niScope_init
instrument handle out channels	channelList: The Channel List value
input impedance	in Table 15 (NI 5152) or Table 16
max input frequency —	(NI 5153/5154) for the current iteration
	inputImpedance:
	NISCOPE_VAL_50_OHM
	maxInputFrequency:
	300,000,000 (NI 5152)
	500,000,000 (NI 5153)
	1,000,000,000 (NI 5154)

3. Configure the common vertical properties using the niScope Configure Vertical VI.

LabVIEW VI	C/C++ Function Call
vertical coupling probe attenuation instrument handle vertical range vertical offset error in channel enabled	Call niScope_ConfigureVertical with the following parameters: vi: The instrument handle from niScope_init coupling: NISCOPE_VAL_DC probeAttenuation: 1.0 channelList: The ChannelList value listed in Table 15 (NI 5152) or Table 16 (NI 5153/5154) for the current iteration range: The Range value listed in Table 15 (NI 5152) or Table 16 (NI 5153/5154) for the current iteration
	offset: 0.0 enabled: NISCOPE_VAL_TRUE

4. Configure the horizontal properties using the niScope Configure Horizontal Timing VI.

LabVIEW VI	NI-SCOPE Function Call
enforce realtime number of records instrument handle min sample rate reference position error in min record length	Call niScope_Configure HorizontalTiming with the following parameters: vi: The instrument handle from niScope_init enforceRealtime: NISCOPE_VAL_FALSE numRecords: 1 minSampleRate: 20,000,000,000 refPosition: 0.0 minNumPts: 2,000

5. Configure the number of averages for each bin in an RIS acquisition using the niScope Property Node.

LabVIEW VI	C/C++ Function Call
	Call niScope_SetAttributeViInt32 with the following parameters:
<mark>n ≕ niScope na</mark> ► RIS Num Avg	<pre>vi: The instrument handle from niScope_init channelList: The Channel List value in Table 15 (NI 5152) or Table 16 (NI 5153/5154) for the current iteration attributeID: NISCOPE_ATTR_RIS_NUM_AVERAGES value: 100.0</pre>

6. Configure an edge trigger using the niScope Configure Trigger (poly) VI. Select the Analog Edge Ref Trigger instance of the VI.

LabVIEW VI	C/C++ Function Call
trigger coupling trigger slope instrument handle trigger source (Channel 0) trigger level error in trigger holdoff trigger delay	C/C++ Function Call Call niScope_Configure TriggerEdge with the following parameters: vi: The instrument handle from niScope_init triggerCoupling: NISCOPE_VAL_DC slope: The <i>Trigger Slope</i> value listed in Table 15 (NI 5152) or Table 16 (NI 5153/5154) for the current iteration triggerSource: The <i>Trigger Source</i> value listed in Table 15 (NI 5152) or Table 16 (OII 5152) or
	current iteration
	holdoff: 0
	delay: 0

7. Commit all the parameter settings to hardware using the niScope Commit VI.

LabVIEW VI	C/C++ Function Call
instrument handle wat instrument handle out	Call niScope_Commit with the following parameter: vi: The instrument handle from niScope_init

- 8. Connect the signal generator to the digitizer input as follows for the current **ChannelList** value:
 - Channel 0 and Channel 1
 - Connect the signal generator directly to the digitizer input for the channel you are testing.
 - External Trigger
 - Place a 50 Ω feedthrough terminator on the trigger input of the digitizer.
 - Connect a cable from the power splitter to the channel 0 input of the digitizer.
 - Connect a cable from the 50 Ω feedthrough terminator to the power splitter.
 - Connect a cable from the output of the signal generator to the power splitter.
- 9. Configure the signal generator to 50 Ω impedance and output a 10,001,000 Hz sine wave with the *Sine Wave Amplitude* value listed in Table 15 (NI 5152) or Table 16 (NI 5153/5154) for the current iteration.
- 10. Wait the amount of time the manufacturer recommends for the output of the signal generator to settle.
- 11. Initiate a waveform acquisition using the niScope Initiate Acquisition VI.

LabVIEW VI	C/C++ Function Call
instrument handle	Call niScope_InitiateAcquisition with the following parameter: vi: The instrument handle from niScope_init

12. Acquire a waveform using the niScope Fetch (poly) VI. Select the Cluster instance of the VI. The first point in the waveform array is the *Measured Trigger Offset* used in step 19 of this section, and in step 5 of the *Trigger Sensitivity* section.

LabVIEW VI	C/C++ Function Call
timeout instrument handle channels numSamples error in error in	Call niScope_Fetch with the following parameter: vi: The instrument handle from niScope_init timeout: 2.0 channelList: The <i>Channel List</i> value in Table 15 (NI 5152) or Table 16 (NI 5153/5154) for the current iteration numSamples: -1

13. Configure an edge trigger using the niScope Configure Trigger (poly) VI. Select the Analog Edge Ref Trigger instance of the VI.

LabVIEW VI	C/C++ Function Call
trigger coupling trigger slope	C/C++ Function Call Call niScope_Configure TriggerEdge with the following parameters: vi: The instrument handle from niScope_init triggerCoupling: NISCOPE_VAL_DC slope: The <i>Trigger Slope</i> value listed in Table 15 (NI 5152) or Table 16
Instrument handle trigger source (Channel 0) trigger level error in trigger holdoff trigger delay	(NI 5153/5154) for the current iteration triggerSource : The <i>Trigger Source</i> value listed in Table 15 (NI 5152) or Table 16 (NI 5153/5154) level : The <i>Positive Trigger Level</i> value in Table 15 (NI 5152) or Table 16 (NI 5153/5154) for the current iteration holdoff : 0 delay : 0

14. Initiate a waveform acquisition using the niScope Initiate Acquisition VI.

LabVIEW VI	C/C++ Function Call
instrument handle ••••••••••••••••••••••••••••••••••••	CallniScope_InitiateAcquisition with the following parameter: vi: The instrument handle from niScope_init

15. Acquire a waveform using the niScope Fetch (poly) VI. Select the Cluster instance of the VI. The first point in the waveform array is the *Measured Positive Trigger Gain* used in step 19.

LabVIEW VI	C/C++ Function Call
timeout	Call niScope_Fetch with the following parameter:
	vi: The instrument handle from
channels	timeout: 2.0
error in	channelList: The ChannelList value listed
	in Table 15 (NI 5152) or Table 16
	(NI 5153/5154) for the current iteration \tilde{c}
	numSamples: -1

16. Configure an edge trigger using the niScope Configure Trigger (poly) VI. Select the Analog Edge Ref Trigger instance of the VI.

LabVIEW VI	C/C++ Function Call
	Call niScope_Configure TriggerEdge with the following parameters:
trigger coupling trigger slope instrument handle trigger level error in trigger holdoff trigger delay	<pre>vi: The instrument handle from niScope_init triggerCoupling: NISCOPE_VAL_DC slope: The Trigger Slope value in Table 15 (NI 5152) or Table 16 (NI 5154) for the current iteration triggerSource: The Trigger Source value listed in Table 15 (NI 5152) or Table 16 (NI 5153/5154) for the current iteration level: The Negative Trigger Level value in Table 15 (NI 5152) or Table 16 (NI 5153/5154) for the current iteration holdoff: "0" delay: "0"</pre>

17. Initiate a waveform acquisition using the niScope Initiate Acquisition VI.

LabVIEW VI	C/C++ Function Call
instrument handle ************************************	Call niScope_InitiateAcquisition with the following parameter: vi: The instrument handle from niScope_init

18. Acquire a waveform using the niScope Fetch (poly) VI. Select the Cluster instance of the VI. The first point in the waveform array is the *Measured Negative Trigger Gain* used in step 19.

timeout Call niScope_Fetch with the following parameter: vi: The instrument handle from niScope_init timeout timeout	instrument handle instrument handle instrument handle instrument handle instrument handle instrument handle out channels wfm info numSamples error in error in error out	timeout Call niScope_Fetch with the following parameter: vi: The instrument handle out vi: The instrument handle from niScope_init channels wfm info numSamples error out error in error out	LabVIEW VI	C/C++ Function Call
timeout instrument handle cobspace instrument handle out instrument handle out instrument handle out	timeout instrument handle channels error in timeout instrument handle out channels error out timeout instrument handle out wfm info error out wfm info error out timeout instrument handle out instrument handle from instrument handle out instrument handle from instrument	timeout instrument handle channels error in timeout instrument handle out channels error out timeout instrument handle out of annels error out timeout error out vi: The instrument handle from niScope_init timeout: 2.0 channelList: The ChannelList value listed in Table 15 (NI 5152) or Table 16 (NI 5153/5154) for the current iteration	timeout instrument handle channels numSamples error in error in	Call niScope_Fetch with the following parameter:
instrument handle	instrument handle channels rumsamples error in error out instrument handle out numSamples error out instrument handle out numSamples error out instrument handle out numSamples error out instrument handle out instrume	instrument handle instrument handle out channels with info numSamples error in error out instrument handle out error in error out instrument handle out instrument instrument handle out instrument instrument handle out instrument handle out in		vi: The instrument handle from
	numSamples waveform error in error out channelList: The ChannelList value	channelList: The ChannelList value listed in Table 15 (NI 5152) or Table 16 (NI 5153/5154) for the current iteration		niScope_init
		(NI 5152/5154) for the current iteration		listed in Table 15 (NII 5152) or Table 16

19. Calculate the error in the trigger accuracy as a percentage of full scale using the following formula:

$$error = \left|\frac{a \times 100}{b}\right| + \left|\frac{\left(\frac{c-d}{e-f} - 1\right) \times 100}{2}\right|$$

where

a = the Measured Trigger Offset b = the Range value listed in Table 15 (NI 5152) or Table 16 (NI 5153/5154) for the current iteration. Note: Change the range value used to 10 V_{pp} when the trigger source is set to NISCOPE_VAL_EXTERNAL.

- *c* = the *Measured Positive Trigger Gain*
- d = the Measured Negative Trigger Gain
- *e* = the *Positive Trigger Level*

f = the *Negative Trigger Level*

Compare the resulting percent to the *Calibration Test Limits* or the *Published Specifications* listed in Table 15 (NI 5152) or Table 16 (NI 5154). If the result is within the selected test limit, the device has passed this portion of the verification.

- 20. Repeat steps 2 through 19, for each iteration in Table 15 (NI 5152) or Table 16 (NI 5153/5154).
- 21. End the session using the niScope Close VI.

LabVIEW VI	C/C++ Function Call
instrument handle ••••••••••••••••••••••••••••••••••••	Call niScope_close with the following parameters: vi: The instrument handle from niScope_init

You have finished verifying the trigger accuracy for the NI 5152/5153/5154.

					33	5			
				Sine Wave	Trigger I	Level (V)			
Iteration	Channel List	Trigger Source	Range (V _{pp})	Amplitude (V _{pp})	Positive	Negative	Trigger Slope	Calibration Test Limits	Published Specifications
1	0	0	1	0.95	0.35	-0.35	NISCOPE_ VAL_ POSITIVE	±4.7%	±5.0%
2							NISCOPE_ VAL_ NEGATIVE		
3	1	1	1	0.95	0.35	-0.35	NISCOPE_ VAL_ POSITIVE		
4							NISCOPE_ VAL_ NEGATIVE		
5	0	NISCOPE_ VAL_ EXTERNAL	10	10	2.6	-2.6	NISCOPE_ VAL_ POSITIVE	±9.7%	±10.0%
6							NISCOPE_ VAL_ NEGATIVE		

Table 15.	NI 5152 Trigger Accuracy	
-----------	--------------------------	--

				Sine Wave	Trigger	Level (V)			Published
Iteration	Channel List	Trigger Source	Range (V _{pp})	Amplitude (V _{pp})	Positive	Negative	Trigger Slope	Calibration Test Limits	Specificati ons
1	0	0	1	0.95	0.35	-0.35	NISCOPE_ VAL_ POSITIVE	±4.7%	±5.0%
2							NISCOPE_ VAL_ NEGATIVE		
3	1	1	1	0.95	0.35	-0.35	NISCOPE_ VAL_ POSITIVE		
4							NISCOPE_ VAL_ NEGATIVE		
5	0	NISCOPE_ VAL_ EXTERNAL	5	7	1.78	-1.78	NISCOPE_ VAL_ POSITIVE	±9.7%	±10.0%
6							NISCOPE_ VAL_ NEGATIVE		

Trigger Sensitivity

Complete the following steps to verify the trigger sensitivity of the NI 5152/5153/5154. You must verify channel 0, channel 1, and the external trigger channel using the corresponding iterations listed in Table 17. Use the following inputs:

- For channel 0, use the entries for iterations 1 and 2.
- For channel 1, use the entries for iterations 3 and 4.
- For the external trigger channel, use the entries for iterations 5 and 6.
- 1. Open a session and obtain a session handle using the niScope Initialize VI.

LabVIEW VI	C/C++ Function Call
reset device	Call niScope_init with the following parameters: resourceName: The device name assigned by MAX idQuery: VI_FALSE resetDevice: VI_TRUE

2. Configure the input impedance and the maximum input frequency using the niScope Configure Chan Characteristics VI.

LabVIEW VI	C/C++ Function Call
	Call niScope_ConfigureChan Characteristics with the following parameters:
	vi: The instrument handle from
	niScope_init
	channelList: The channelList value
input impedance	from Table 17 for the current iteration.
max input frequency	inputImpedance:
	NISCOPE_VAL_50_OHM
	maxInputFrequency:
	300,000,000 (NI 5152)
	500,000,000 (NI 5153)
	1,000,000,000 (NI 5154)

3. Configure the common vertical properties using the niScope Configure Vertical VI.

LabVIEW VI	C/C++ Function Call
vertical coupling probe attenuation instrument handle channels vertical range vertical offset error in channel enabled	Call niScope_ConfigureVertical with the following parameters: vi: The instrument handle from niScope_init coupling: NISCOPE_VAL_DC probeAttenuation: 1.0 channelList: The channelList value from Table 17 for the current iteration.
	<pre>range: 1 offset: 0.0 enabled: NISCOPE_VAL_TRUE</pre>

4. Configure the horizontal properties using the niScope Configure Horizontal Timing VI.

LabVIEW VI	C/C++ Function Call
enforce realtime number of records instrument handle min sample rate reference position error in min record length	Call niScope_Configure HorizontalTiming with the following parameters: vi: The instrument handle from niScope_init enforceRealtime: NISCOPE_VAL_TRUE numRecords: 1 minSampleRate: 1,000,000,000 refPosition: 50.0 minNumPts: 1,000

5. Configure an edge trigger using the niScope Configure Trigger (poly) VI. Select the Analog Edge Ref Trigger instance of the VI.

LabVIEW VI	C/C++ Function Call
	Call niScope_Configure TriggerEdge with the following parameters:
trigger coupling instrument handle trigger source (Channel 0) trigger level error in trigger holdoff trigger delay	<pre>vi: The instrument handle from niScope_init triggerCoupling: NISCOPE_VAL_DC slope: The Trigger Slope value listed in Table 17 for the current iteration triggerSource: The Trigger Source value listed in Table 17 for the current iteration level: The Measured Trigger Offset value from step 12 in the Trigger Accuracy section for the current Trigger Slope and Trigger Source listed in Table 17 holdoff: 0 delay: 0</pre>

6. Commit all the parameter settings to hardware using the niScope Commit VI.

LabVIEW VI	C/C++ Function Call
instrument handle	Call niScope_Commit with the following parameter: vi: The instrument handle from niScope_init

- 7. Connect the scope calibrator to the digitizer input as follows for the current *Trigger Source* value from Table 17:
 - Channel 0 and Channel 1—Connect the scope calibrator directly to the digitizer input channel as specified by the *Trigger Source* value from Table 17 for the current iteration.
 - External Trigger—Connect the scope calibrator to the external trigger channel (TRIG).
- 8. Configure the scope calibrator to output the signal listed under the *Calibration Test Limits* or the *Published Specifications* in Table 17.

- 9. Wait 2,500 ms for the impedance matching and frequency of the calibrator to settle.
- 10. Initiate a waveform acquisition using the niScope Initiate Acquisition VI.

11. Fetch a waveform from the digitizer using the niScope Fetch (poly) VI. Select the Cluster instance of the VI.

LabVIEW VI	C/C++ Function Call
timeout instrument handle out channels numSamples error in	Call niScope_Fetch with the following parameter: vi: The instrument handle from niScope_init timeout: 2.0 channelList: The <i>channelList</i> value from Table 17 for the current iteration. numSamples: -1

If the digitizer does not time out, the digitizer has passed this portion of the verification. If the digitizer times out, you must call niScope Abort VI (niScope_Abort function) to end the acquisition.

- 12. Repeat steps 2 through 11 for each iteration in Table 17.
- 13. End the session using the niScope Close VI.

LabVIEW VI	C/C++ Function Call
instrument handle	Call niScope_close with the following parameters: vi: The instrument handle from niScope_init

You have finished verifying the trigger sensitivity for the NI 5152/5153/5154.

				Calibrator Signal	
Iteration	Channel List	Trigger Source	Trigger Slope	Calibration Test Limits	Published Specifications
1	0	0	NISCOPE_ VAL_POSITIVE	98.5 mV _{pp} 300 MHz Sinewave	100 mV _{pp} 300 MHz Sinewave
2	0	0	NISCOPE_ VAL_NEGATIVE	98.5 mV _{pp} 300 MHz Sinewave	100 mV _{pp} 300 MHz Sinewave
3	1	1	NISCOPE_ VAL_POSITIVE	98.5 mV _{pp} 300 MHz Sinewave	100 mV _{pp} 300 MHz Sinewave
4	1	1	NISCOPE_ VAL_NEGATIVE	98.5 mV _{pp} 300 MHz Sinewave	100 mV _{pp} 300 MHz Sinewave
5	1	NISCOPE_ VAL_EXTERNAL	NISCOPE_ VAL_POSITIVE	985 mV _{pp} 300 MHz Sinewave	1.0 V _{pp} 300 MHz Sinewave
6	1	NISCOPE_ VAL_EXTERNAL	NISCOPE_ VAL_NEGATIVE	985 mV _{pp} 300 MHz Sinewave	1.0 V _{pp} 300 MHz Sinewave

Table 17. NI 5152/5153/5154 Trigger Sensitivity Inputs

Adjustment

 \mathbb{N}

If the NI 5152/5153/5154 successfully passed each of the verification procedures within the calibration test limits, then an adjustment is recommended but not required to warrant the published specifications for the next two years. If the digitizer was not within the calibration test limits for each of the verification procedures, you can perform the adjustment procedure to improve the accuracy of the digitizer. Refer to *Appendix A: Calibration Options* to determine which procedures to perform.

An adjustment is required only once every two years. Following the adjustment procedure automatically updates the calibration date and temperature in the EEPROM of the digitizer.

Note If the digitizer passed the entire verification procedure within the calibration test limits and you do not want to perform an adjustment, you can update the calibration date and onboard calibration temperature without making any adjustments by calling *only* niScope Cal Start and niScope Cal End VIs.

Complete the following steps to externally adjust the NI 5152/5153/5154.

1. Obtain a calibration session handle using the niScope Cal Start VI.

LabVIEW VI	C/C++ Function Call
resource name Start instrument handle password Start error out	Call niScope_CalStart with the following parameters: resourceName: The device number assigned by MAX password: "NI"

- 2. Connect the calibrator test head directly to the digitizer input channel 0.
- 3. Configure the calibrator to output the voltage listed under *Input (V)* in Table 17 (NI 5152), or Table 18 (NI 5153/5154) for the current iteration. Configure the load impedance of the calibrator to 1 M Ω (NI 5152), or 50 Ω (NI 5153/5154).
- 4. Wait 2,500 ms for the impedance matching of the calibrator to settle.
- 5. Adjust the vertical range using the niScope Cal Adjust Range VI.

LabVIEW VI	C/C++ Function Call
	Call niScope_CalAdjustRange with the following parameters:
	vi: The instrument handle from
instrument handle with andle out channels range (V) stimulus error in	niScope_CalStart channelName: "0"
	range : The <i>Range</i> value listed in Table 18
	(NI 5152), Table 19 (NI 5153/5154) for the current iteration
	stimulus: The Input (V) value listed in
	Table 18 (NI 5152), Table 19
	(NI 5153/5154) for the current iteration

- 6. Repeat steps 3 through 5 for each iteration in Table 18 (NI 5152) or Table 19 (NI 5153/5154).
- Move the scope calibrator test head to the digitizer input channel 1 and repeat steps 3 through 6, changing the value of the channelName parameter from "0" to "1".
- 8. Move the scope calibrator test head to the external trigger channel input on the digitizer.

- 9. Configure the calibrator to output the voltage listed under *Input (V)* in Table 19 (NI 5152), or Table 20 (NI 5153/5154) for the current iteration. Configure the load impedance of the calibrator to 1 M Ω .
- 10. Wait 2,500 ms for the impedance matching of the calibrator to settle.
- 11. Adjust the vertical range using the niScope Cal Adjust Range VI.

LabVIEW VI	C/C++ Function Call
instrument handle channels range (V) stimulus error in	Call niScope_CalAdjustRange with the following parameters: vi: The instrument handle from niScope_CalStart channelName: "NISCOPE_VAL_EXTERNAL" range: The Range value listed in Table 20 (NI 5152), Table 21 (NI 5153/5154) for the current iteration stimulus: The Input (V) value listed in
	Table 20 (NI 5152), Table 21 (NI 5153/5154) for the current iteration

- 12. Repeat steps 9 through 11 for each iteration in Table 20 (NI 5152), or Table 21 (NI 5153/5154).
- 13. Using a BNC cable, connect REF FREQUENCY OUTPUT on the back of the calibrator to the channel 0 input of the digitizer. Make sure the output of the reference frequency is enabled and set to 10 MHz. If you are not using a Fluke 9500B/Wavetek 9500 calibrator, connect a precise 10 MHz, 1 V_{pk-pk} sine or square wave source to the channel 0 input.
- 14. Calibrate the sample rate of the digitizer using the niScope Cal Adjust VCXO VI.

LabVIEW VI	C/C++ Function Call
instrument handle stimulus frequency (Hz)	Call niScope_CalAdjust VCXO with the following parameters: vi: The instrument handle from niScope_CalStart stimulusFreq: 10,000,000

Note The 10 MHz stimulus is automatically taken from channel 0.

15. Disconnect or disable all inputs to the digitizer.

16. Self-calibrate the digitizer using niScope Cal Self Calibrate VI.

LabVIEW VI	C/C++ Function Call
instrument handle	Call niScope_CalSelfCalibrate with the following parameters: vi: The instrument handle from niScope_CalStart channelList: VI_NULL option: VI_NULL

17. End the calibration session by calling the niScope Cal End VI.

LabVIEW VI	C/C++ Function Call
instrument handle ************************************	Call niScope_CalEnd with the following parameters: sessionHandle: The instrument handle from niScope_CalStart action: NISCOPE_VAL_ACTION_STORE to
	save the results of the calibration

You have finished adjusting the NI 5152/5153/5154. Repeat the *Verification* section to reverify the performance of the digitizer after adjustments.

Iteration	Range (V _{pp})	Input (V)
1	10	4.5
2	4	1.8
3	2	0.9
4	1	0.45
5	0.4	0.18
6	0.2	0.09
7	0.1	0.045
8	10	-4.5
9	4	-1.8
10	2	-0.9

Table 18. NI 5152 Input Parameters forInput Channel External Adjustment

Iteration	Range (V _{pp})	Input (V)
11	1	-0.45
12	0.4	-0.18
13	0.2	-0.09
14	0.1	-0.045

Table 18. NI 5152 Input Parameters for Input Channel External Adjustment (Continued)

Table 19. NI 5153/5154 Input Parameters for Input Channel External Adjustment

Iteration	Range (V _{pp})	Input (V)
1	5	0.45
2	2	0.45
3	1	0.45
4	0.5	0.18
5	0.2	0.09
6	0.1	0.045
7	5	-0.45
8	2	-0.45
9	1	-0.45
10	0.5	-0.18
11	0.2	-0.09
12	0.1	-0.045

 Table 20.
 NI 5152 Input Parameters for

 External Trigger Channel External Adjustment

Iteration	Range (V _{pp})	Input (V)
1	10	4.5
2	10	-4.5

Table 21. NI 5153/5154 Input Parameters for

 External Trigger Channel External Adjustment

Iteration	Range (V _{pp})	Input (V)
1	10	4.5
2	10	0

Appendix A: Calibration Options

External calibration involves verification and if necessary, adjustment and reverification. Adjustment is the process of measuring and compensating for device performance to improve the measurement accuracy. Performing an adjustment updates the calibration date, effectively resetting the calibration interval. The device is warranted to meet or exceed its published specifications for the duration of the calibration interval. Verification is the process of testing the device to ensure that the measurement accuracy is within certain specifications. Verification can be used to ensure that the adjustment process needs to be performed at all.

This document provides two sets of test limits for most verification stages-the calibration test limits and the published specifications. The calibration test limits are more restrictive than the published specifications. If all of the measurement errors determined during verification fall within the calibration test limits, the device is warranted to meet or exceed its published specifications for a full calibration interval (two years). For this reason, you must verify against the calibration test limits when performing verification after adjustment. If all of the measurement errors determined during verification fall within the published specifications, but not within the calibration test limits, the device is meeting its published specifications. However, the device will not necessarily remain within these specifications for an additional two years. The device will meet published specifications for the remainder of the current calibration interval. In this case, you can perform an adjustment if you want to further improve the measurement accuracy or reset the calibration interval. If some measurement errors determined during verification do not fall within the published specifications, you must perform an adjustment to restore the device operation to its published specifications.

The *Complete Calibration* section describes the recommended calibration procedure. The *Optional Calibration* section describes alternative procedures that allow you to skip adjustment if the device already meets its calibration test limits or published specifications.

Complete Calibration

Performing a complete calibration is the recommended way to warrant that the NI 5152/5153/5154 will meet or exceed its published specifications for a two-year calibration interval. At the end of the complete calibration procedure, you verify that the measurement error falls within the calibration test limits. Figure 1 shows the programming flow for complete calibration.

Figure 1. Complete Calibration Programming Flow

Optional Calibration

 $|\nabla|$

You can choose to skip the adjustment steps of the calibration procedure if the measurement error is within the calibration test limits or the published specifications during the first verification. If all of the measurement errors determined during the first verification fall within the calibration test limits, the device is warranted to meet or exceed its published specifications for a full calibration interval. In this case, you can update the calibration date, effectively resetting the calibration interval, without actually performing an adjustment. Refer to the *Adjustment* section for more information.

If all of the measurement errors determined during the first verification fall within the published specifications, but not within the calibration test limits, adjustment is also optional. However, you cannot update the calibration date because the device will not necessarily operate within the published specifications for an additional two years.

Note Regardless of the results of the first verification, if you choose to perform an adjustment, you must verify that the measurement error falls within the calibration test limits at the end of the calibration procedure.

Figure 2. Optional Calibration Programming Flow

Appendix B: Calibration Utilities

NI-SCOPE supports several calibration utilities you can use to retrieve information about adjustments performed on the NI 5152/5153/5154, change the external calibration password, and store small amounts of information in the onboard EEPROM. Although you can retrieve some data using MAX, you can retrieve all the data programmatically using NI-SCOPE functions.

MAX

To retrieve data using MAX, complete the following steps:

- 1. Select the device from which you want to retrieve information from **My System»Devices and Interfaces»NI-DAQmx Devices**.
- 2. Select the **Calibration** tab in the lower right corner.

You should see information about the last date and temperature for both external and self-calibration.

NI-SCOPE

NI-SCOPE provides a full complement of calibration utility functions and VIs. Refer to the *NI High-Speed Digitizers Help* for the complete function reference and VI reference. The utility functions include:

- niScope Cal Change Password VI (niScope_CalChangePassword)
- niScope Cal Fetch Count VI (niScope_CalFetchCount)
- niScope Cal Fetch Date VI (niScope_CalFetchDate)
- niScope Cal Fetch Misc Info VI (niScope_CalFetchMiscInfo)
- niScope Cal Fetch Temperature VI (niScope_CalFetchTemperature)
- niScope Cal Store Misc Info VI (niScope_CalStoreMiscInfo)

Where to Go for Support

The National Instruments Web site is your complete resource for technical support. At ni.com/support you have access to everything from troubleshooting and application development self-help resources to email and phone assistance from NI Application Engineers.

A Declaration of Conformity (DoC) is our claim of compliance with the Council of the European Communities using the manufacturer's declaration of conformity. This system affords the user protection for electronic compatibility (EMC) and product safety. You can obtain the DoC for your product by visiting ni.com/certification. If your product supports calibration, you can obtain the calibration certificate for your product at ni.com/calibration.

National Instruments corporate headquarters is located at 11500 North Mopac Expressway, Austin, Texas, 78759-3504. National Instruments also has offices located around the world to help address your support needs. For telephone support in the United States, create your service request at ni.com/support and follow the calling instructions or dial 512 795 8248. For telephone support outside the United States, contact your local branch office:

Australia 1800 300 800, Austria 43 662 457990-0, Belgium 32 (0) 2 757 0020, Brazil 55 11 3262 3599, Canada 800 433 3488, China 86 21 5050 9800, Czech Republic 420 224 235 774, Denmark 45 45 76 26 00, Finland 358 (0) 9 725 72511, France 01 57 66 24 24, Germany 49 89 7413130, India 91 80 41190000, Israel 972 3 6393737, Italy 39 02 41309277, Japan 0120-527196, Korea 82 02 3451 3400, Lebanon 961 (0) 1 33 28 28, Malaysia 1800 887710, Mexico 01 800 010 0793, Netherlands 31 (0) 348 433 466, New Zealand 0800 553 322, Norway 47 (0) 66 90 76 60, Poland 48 22 328 90 10, Portugal 351 210 311 210, Russia 7 495 783 6851, Singapore 1800 226 5886, Slovenia 386 3 425 42 00, South Africa 27 0 11 805 8197, Spain 34 91 640 0085, Sweden 46 (0) 8 587 895 00, Switzerland 41 56 2005151, Taiwan 886 02 2377 2222, Thailand 662 278 6777, Turkey 90 212 279 3031, United Kingdom 44 (0) 1635 523545

CVI, LabVIEW, National Instruments, NI, ni.com, the National Instruments corporate logo, and the Eagle logo are trademarks of National Instruments Corporation. Refer to the *Trademark*. Information at ni.com/trademarks for other National Instruments trademarks. The mark LabWindows is used under a license from Microsoft Corporation. Windows is a registered trademark of Microsoft Corporation in the United States and other countries. Other product and company names mentioned herein are trademarks or trade names of their respective companies. For patents covering National Instruments products/technology, refer to the appropriate location: Help-Patents in your software, the patents. txt file on your media, or the National Instruments Patent Notice at ni.com/patents.

© 2009–2010 National Instruments Corporation. All rights reserved.