COMPREHENSIVE SERVICES

We offer competitive repair and calibration services, as well as easily accessible documentation and free downloadable resources.

SELL YOUR SURPLUS

We buy new, used, decommissioned, and surplus parts from every NI series. We work out the best solution to suit your individual needs.

Sell For Cash Get Credit Receive a Trade-In Deal

OBSOLETE NI HARDWARE IN STOCK & READY TO SHIP

We stock New, New Surplus, Refurbished, and Reconditioned NI Hardware.

Bridging the gap between the manufacturer and your legacy test system.

0

1-800-915-6216

www.apexwaves.com

sales@apexwaves.com

All trademarks, brands, and brand names are the property of their respective owners.

Request a Quote

PXI-4130

SPECIFICATIONS

PXI-4130

±20 V, 40 W PXI Source Measure Unit

These specifications apply to the PXI-4130 with APS-4100 auxiliary power supply and to the PXI-4130 without auxiliary power supply.

Contents

Definitions	2
Conditions	2
Device Capabilities	
SMU Channel Specifications (Channel 1)	4
Voltage Programming Accuracy/Resolution	4
Current Programming Accuracy/Resolution	4
Voltage Measurement Accuracy/Resolution	4
Current Measurement Accuracy/Resolution	5
Channel 1 Additional Specifications	
Utility Channel Specifications (Channel 0)	6
Programming Accuracy/Resolution	
Measurement Accuracy/Resolution	6
Channel 0 Additional Specifications	
Programming and Measurement Timing	7
Protection	
Calibration Interval	7
Accuracy Specification Derating versus Load Current	8
Maximum Sinking Power versus Ambient Temperature for Channel 1	
Physical Characteristics	8
Power Requirements	9
Environment	9
Operating Environment	.10
Storage Environment	
Shock and Vibration	.10
Compliance and Certifications	
Safety	
Electromagnetic Compatibility	. 11
CE Compliance	12
Online Product Certification	
Environmental Management	. 12

Definitions

Warranted specifications describe the performance of a model under stated operating conditions and are covered by the model warranty.

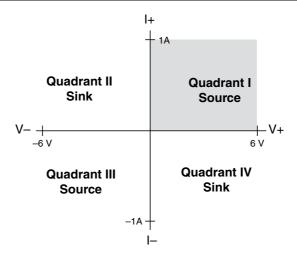
Characteristics describe values that are relevant to the use of the model under stated operating conditions but are not covered by the model warranty.

- Typical specifications describe the expected performance met by a majority of the models
- Nominal specifications describe parameters and attributes that may be useful in operation.

Specifications are *Warranted* unless otherwise noted.

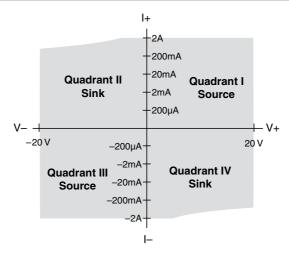
Conditions

Specifications are valid under the following conditions unless otherwise noted.


- Ambient temperature¹ of 23 °C \pm 5 °C
- 30 minutes warm-up time
- niDCPower Samples to Average property or NIDCPOWER_ATTR_SAMPLES_TO_AVERAGE attribute set to 300 for optimal 50 Hz and 60 Hz rejection

Device Capabilities

Channel	DC Voltage Ranges	Isolation	DC Current Source and Sink Ranges
SMU Channel (1)	-20 V to +20 V	60 VDC, CAT I	200 μΑ
	-6 V to +6 V		2 mA
			20 mA
			200 mA
			$2 A^2$
Utility Channel (0)	0 V to 6 V	N/A	1 A (6 W)


¹ The ambient temperature of a PXI system is defined as the temperature at the chassis fan inlet (air intake).

² Current input/output for channel 1 is limited to 2 W or 300 mA when operating under internal power. Continuous sinking power for channel 1 is limited to 10 W, subject to derating above 30 °C. Refer to the figure Maximum Sinking Power versus Ambient Temperature for Channel 1.

Channel 0: 6W in Quadrant I

Figure 2. Channel 1 Quadrant Diagram

Channel 1: 40W in Quadrants I and III, 10W in Quadrants II and IV

SMU Channel Specifications (Channel 1)

Voltage Programming Accuracy/Resolution

Range	Resolution	Accuracy ± (% of Output + Offset)	
		1 Year 23 °C ± 5 °C	
±20 V	0.33 mV	0.034% + 1.8 mV	
±6 V	0.1 mV	0.034% + 1.5 mV	

Current Programming Accuracy/Resolution³

Range	Resolution	Accuracy ± (% of Output + Offset)	
		1 Year 23 °C ± 5 °C	
200 μΑ	10 nA	0.03% + 0.1 μΑ	
2 mA	100 nA	0.03% + 1 μΑ	
20 mA	1 μΑ	0.03% + 10 μΑ	
200 mA	10 μΑ	$0.03\% + 100 \mu\text{A}$	
2 A ⁴	100 μΑ	0.12% + 1 mA	

Voltage Measurement Accuracy/Resolution

Range	Resolution	Accuracy ± (% of Reading + Offset)
		1 Year 23 °C ± 5 °C
±20 V	0.10 mV	0.03% + 1.5 mV
±6 V	0.10 mV	0.03% + 1.5 mV

³ Minimum programmable current limit/level is 2% of range.

⁴ For currents ≥ 500 mA, refer to the additional derating information in the figure Accuracy Specification Derating versus Load Current.

Current Measurement Accuracy/Resolution

Range	Resolution	Accuracy ± (% of Reading + Offset)	
		1 Year 23 °C ± 5 °C	
200 μΑ	1.0 nA	$0.03\% + 0.02 \mu A$	
2 mA	10 nA	$0.03\% + 0.2 \mu A$	
20 mA	0.1 μΑ	0.03% + 2 μΑ	
200 mA	1 μΑ	0.03% + 40 μΑ	
2 A ⁴	10 μΑ	0.12% + 200 μΑ	

Channel 1 Additional Specifications

Settling time ⁵	500 μs, typical
Output capacitance	
Low setting	10 nF, typical
High setting	6.8 μF, typical
Slew rate	0.08 V/μs, typical
Transient response	Recovers to <0.1% of voltage range within 200 μs after a change in load current from 10% to 90% of current range, typical
Normal Mode noise (Source only)	15 mV _{p-p} into resistive load <5 mV RMS 20 Hz to 20 MHz bandwidth, typical
Remote sense	Up to 1 V drop per lead using internal power or \geq 12 V auxiliary power supply; Add 120 μ V to accuracy specification per volt of lead drop.
Load regulation	
Voltage	20 mV per amp of output load using Local Sense
Current	0.01% of range per volt of output change

 $^{^5}$ Settled to 1%, 1 V step, 50% of current range at final value, output capacitance set to low, using auxiliary power supply.

Line regulation (% of output + offset, per volt of change in auxiliary power input)

Voltage	0.01 + 1 mV
Current	0.01 + 0.02% of range

Temperature coefficient (Tempco) is 10% of accuracy specification per °C.

Utility Channel Specifications (Channel 0)

Programming Accuracy/Resolution⁶

Output Function	Range	Resolution	Accuracy ± (% of output + offset)
			1 Year 23 °C ± 10 °C
Voltage	+6 V	0.12 mV	0.05% + 4 mV
Current	1 A ⁷	0.02 mA	0.15% + 4 mA

Measurement Accuracy/Resolution

Measurement Type	Range	Resolution	Accuracy ± (% of reading + offset)
			1 Year 23 °C ± 10 °C
Voltage	+6 V	0.06 mV	0.05% + 4 mV
Current	1 A ⁷	0.01 mA	0.15% + 4 mA

Channel 0 Additional Specifications

Settling time	<1 ms, 10% to 90% of range, measured with full load, typical
Output capacitance	33 μF, typical
Transient response	Recovers to <0.1% of voltage range within 50 μ s after a change in load current from 50% to 100% of current range, typical
Normal Mode noise and ripple (source only, voltage)	<1.5 mV RMS, 20 Hz to 20 MHz bandwidth, typical

⁶ Minimum programmable current limit/level is 2% of range.

For currents ≥500 mA, refer to the additional derating information in the figure Accuracy Specification Derating versus Load Current.

Load regulation

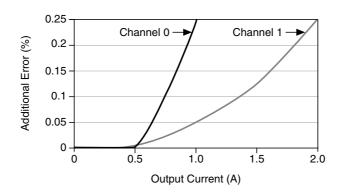
Voltage	0.42% of range per amp of output load
Current	0.02% of range per volt of output change

Temperature coefficient (Tempco) is 15% of accuracy specification per °C.

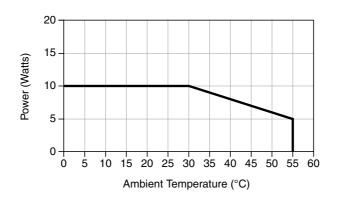
Programming and Measurement Timing⁸

Maximum output update rate	3000 Updates/s, nominal
Maximum measurement rate (samples to average = 1)	3 kS/s, nominal
Single point update latency	600 μs, typical

Protection


uxiliary power input protection	
Overvoltage	>15.5 VDC shut-off; >20 VDC crowbar (fused)
Overcurrent or reverse voltage	Fused

Calibration Interval


Recommended calibration interval	1 year

⁸ Does not include load dependent settling time.

Accuracy Specification Derating versus Load Current

Maximum Sinking Power versus Ambient Temperature for Channel 1

Physical Characteristics

Dimensions	3U, one-slot PXI/cPCI module
	$2.0 \text{ cm} \times 13.0 \text{ cm} \times 21.6 \text{ cm}$
	$(0.8 \text{ in.} \times 5.1 \text{ in.} \times 8.5 \text{ in.})$, nominal
Weight	312 g (11 oz), typical

User-replaceable fuses

Channel 0 (internally-socketed)	1, Littelfuse 045301.5
	(F 1.5 A 125 V), characteristic
Auxiliary power input (front panel	1, 5×20 mm glass fuse
mount)	(T 6.3 A L 250 V), characteristic

Note NI recommends Littelfuse 21806.3 for Auxiliary Power Input fuse.

Front panel connectors	
Output channels	MINI-COMBICON, 3.81 mm (6 position), nominal
Auxiliary power input	MINI-COMBICON, 3.5 mm (2 position), nominal

Note Front panel connectors can accept wire gauges from 16 AWG to 28 AWG.

Power Requirements

10 W at 5 V
1 W at 3.3 V
6 W at 12 V
2.5 W at -12 V, typical
11 VDC to 15.5 VDC
5 A max

Environment

Maximum altitude	2,000 m (at 25 °C ambient temperature)
Pollution Degree	2

Indoor use only.

⁹ Optional; Channel 1 only.

Operating Environment

Ambient temperature range	0 °C to 55 °C (Tested in accordance with IEC 60068-2-1 and IEC 60068-2-2.)
Relative humidity range	10% to 90%, noncondensing (Tested in accordance with IEC 60068-2-56.)
Storage Environment	
Ambient temperature range	-40 °C to 70 °C (Tested in accordance with IEC 60068-2-1 and IEC 60068-2-2.)
Relative humidity range	5% to 95%, noncondensing (Tested in accordance with IEC 60068-2-56.)

Shock and Vibration

Operational shock	30 g peak, half-sine, 11 ms pulse (Tested in accordance with IEC 60068-2-27. Test profile developed in accordance with MIL-PRF-28800F.)
Random vibration	
Operating	5 Hz to 500 Hz, 0.3 g_{rms} (Tested in accordance with IEC 60068-2-64.)
Nonoperating	5 Hz to 500 Hz, 2.4 g _{rms} (Tested in accordance with IEC 60068-2-64. Test profile exceeds the requirements of MIL-PRF-28800F, Class 3.)

Compliance and Certifications

Caution You can impair the protection provided by the PXI-4130 if you use it in a manner not described in this document.

Caution To ensure the specified EMC performance, operate this product only with shielded cables and accessories.

Safety

Caution Do not connect to signals or use for measurements within CAT II, III, or IV.

Isolation Voltage

Channel-to-earth ground, continuous

60 VDC, CAT I¹⁰, verified by dielectric withstand test, 5 s

This product is designed to meet the requirements of the following electrical equipment safety standards for measurement, control, and laboratory use:

- IEC 61010-1, EN 61010-1
- UL 61010-1, CSA C22.2 No. 61010-1

Note For UL and other safety certifications, refer to the product label or the Online Product Certification section.

Electromagnetic Compatibility

This product meets the requirements of the following EMC standards for electrical equipment for measurement, control, and laboratory use:

- EN 61326-1 (IEC 61326-1): Class A emissions; Basic immunity
- EN 55011 (CISPR 11): Group 1, Class A emissions
- EN 55022 (CISPR 22): Class A emissions
- EN 55024 (CISPR 24): Immunity
- AS/NZS CISPR 11: Group 1, Class A emissions •
- AS/NZS CISPR 22: Class A emissions
- FCC 47 CFR Part 15B: Class A emissions
- ICES-001: Class A emissions

Note In the United States (per FCC 47 CFR), Class A equipment is intended for use in commercial, light-industrial, and heavy-industrial locations. In Europe, Canada, Australia, and New Zealand (per CISPR 11), Class A equipment is intended for use only in heavy-industrial locations.

Note Group 1 equipment (per CISPR 11) is any industrial, scientific, or medical equipment that does not intentionally generate radio frequency energy for the treatment of material or inspection/analysis purposes.

Note For EMC declarations, certifications, and additional information, refer to the Online Product Certification section.

Measurement Categories CAT I and CAT O (Other) are equivalent. These test and measurement circuits are not intended for direct connection to the MAINs building installations of Measurement Categories CAT II, III, or CAT IV.

CE Compliance ζ

This product meets the essential requirements of applicable European Directives, as follows:

- 2014/35/EU; Low-Voltage Directive (safety)
- 2014/30/EU; Electromagnetic Compatibility Directive (EMC)

Online Product Certification

Refer to the product Declaration of Conformity (DoC) for additional regulatory compliance information. To obtain product certifications and the DoC for this product, visit *ni.com/certification*, search by model number or product line, and click the appropriate link in the Certification column.

Environmental Management

NI is committed to designing and manufacturing products in an environmentally responsible manner. NI recognizes that eliminating certain hazardous substances from our products is beneficial to the environment and to NI customers.

For additional environmental information, refer to the *Minimize Our Environmental Impact* web page at *ni.com/environment*. This page contains the environmental regulations and directives with which NI complies, as well as other environmental information not included in this document.

Waste Electrical and Electronic Equipment (WEEE)

EU Customers At the end of the product life cycle, all NI products must be disposed of according to local laws and regulations. For more information about how to recycle NI products in your region, visit *ni.com/environment/weee*.

电子信息产品污染控制管理办法(中国 RoHS)

Information is subject to change without notice. Refer to the *NI Trademarks and Logo Guidelines* at ni.com/trademarks for information on NI trademarks. Other product and company names mentioned herein are trademarks or trade names of their respective companies. For patents covering NI products/technology, refer to the appropriate location: Help»Patents in your software, the patents.txt file on your media, or the *National Instruments Patent Notice* at ni.com/patents. You can find information about end-user license agreements (EULAs) and third-party legal notices in the readme file for your NI product. Refer to the *Export Compliance Information* at ni.com/legal/export-compliance for the NI global trade compliance policy and how to obtain relevant HTS codes, ECCNs, and other import/export data. NI MAKES NO EXPRESS OR IMPLIED WARRANTIES AS TO THE ACCURACY OF THE INFORMATION CONTAINED HEREIN AND SHALL NOT BE LIABLE FOR ANY ERRORS, U.S. Government Customers: The data contained in this manual was developed at private expense and is subject to the applicable limited rights and restricted data rights as set forth in FAR 52.227-14, DFAR 252.227-7014, and DFAR 252.227-7015.