COMPREHENSIVE SERVICES

We offer competitive repair and calibration services, as well as easily accessible documentation and free downloadable resources.

SELL YOUR SURPLUS

We buy new, used, decommissioned, and surplus parts from every NI series. We work out the best solution to suit your individual needs. We Sell For Cash We Get Credit We Receive a Trade-In Deal

OBSOLETE NI HARDWARE IN STOCK & READY TO SHIP

We stock New, New Surplus, Refurbished, and Reconditioned NI Hardware.

APEX WAVES

Bridging the gap between the manufacturer and your legacy test system.

1-800-915-6216
www.apexwaves.com
sales@apexwaves.com

 \bigtriangledown

All trademarks, brands, and brand names are the property of their respective owners.

Request a Quote CLICK HERE PXI-5152

SPECIFICATIONS

PXI-5152

300 MHz Bandwidth, 2 GS/s, 8-Bit PXI Oscilloscope

Contents

Definitions	2
Conditions	2
Vertical	3
Analog Input (Channel 0 and Channel 1)	3
Impedance and Coupling	3
Voltage Levels	3
Accuracy	4
Bandwidth and Transient Response	4
Spectral Characteristics	7
Noise	8
Horizontal	9
Sample Clock	9
Onboard Clock (Internal VCSO)	9
External Sample Clock	9
Phase-Locked Loop (PLL) Reference Clock	0
Sample Clock and Reference Clock Input (PFI 0, Front Panel Connector) 1	0
Reference Clock Output (PFI 1, Front Panel Connector)1	0
Trigger	1
Analog Trigger	2
Digital Trigger1	2
External Trigger Input (Front Panel Connector)12	2
PFI 0 and PFI 1 (Programmable Function Interface, Front Panel Connectors)1	3
As an Input (Trigger)1	3
As an Output (Event)	3
Waveform Specifications	4
Calibration14	4
External Calibration14	4
Self-Calibration1	5
Calibration Specifications	5
Software	5
Driver Software1	5
Application Software	5
Interactive Soft Front Panel and Configuration1	5
TClk Specifications	5
Power	6

Physical	.16
Environment	.17
Environment	.17
Shock and Vibration	.17
Compliance and Certifications	.18
Safety	18
Electromagnetic Compatibility	18
CE Compliance	19
Online Product Certification	19
Environmental Management	.19

Definitions

Warranted specifications describe the performance of a model under stated operating conditions and are covered by the model warranty. *Warranted* specifications account for measurement uncertainties, temperature drift, and aging. *Warranted* specifications are ensured by design or verified during production and calibration.

Characteristics describe values that are relevant to the use of the model under stated operating conditions but are not covered by the model warranty.

- *Typical* specifications describe the performance met by a majority of models.
- *Nominal* specifications describe an attribute that is based on design, conformance testing, or supplemental testing.
- Measured specifications describe the measured performance of a representative model.

Specifications in this document are Typical unless otherwise noted.

Conditions

Specifications are valid under the following conditions unless otherwise noted.

- All filter settings
- All impedance selections
- Sample clock set to 1 GS/s
- Real-Time Interleaved Sampling (TIS) mode provides a 2 GS/s real-time sample rate for a single channel
- The module is warmed up for 15 minutes at ambient temperature
- Calibration cycle is maintained
- The PXI/PCI chassis fan speed is set to HIGH, the foam fan filters are removed if present, and the empty slots contain chassis slot blockers and filler panels. For more information about cooling, refer to the *Maintain Forced-Air Cooling Note to Users*.

Vertical

Analog Input (Channel 0 and Channel 1)

Number of channels

Two (simultaneously sampled)

Connectors

BNC

Impedance and Coupling

Input Impedance (software-select	etable)
50 Ω	$50 \Omega \pm 1.5\%$
1 ΜΩ	1 M Ω ±0.75% in parallel with a nominal capacitance of 22 pF
Input coupling	Software-selectable: AC, DC, GND

Voltage Levels

Table 1. Full Scale (FS) Input Range and Programmable Vertical Offset Range

Range (V _{pk-pk})	50 Ω Offset (V)	1 MΩ Offset (V)
0.1		
0.2	±1	+1
0.4		1
1		
2	±6	
4	±5	± 10
10	±2	

Maximum input overload

50 Ω	7 V _{rms} with Peaks \leq 10 V
1 MΩ	Peaks ≤42 V

Accuracy

Resolution	8 bits
DC accuracy, warranted ¹²	
0.1 V to 1 V input range	$\pm(1.26\%~of~Input+1.0\%~of~FS+500~\mu V)$
2 V to 10 V input range	$\pm (1.26\% \text{ of Input} + 1.0\% \text{ of FS} + 5 \text{ mV})$
Programmable vertical offset accuracy ²	$\pm 0.9\%$ of offset setting, warranted
DC Drift, nominal ³	
0.1 V to 1 V input range	$\pm (0.052\% \text{ of Input} \pm 100 \ \mu\text{V}) \text{ per }^{\circ}\text{C}$
2 V to 10 V input range	\pm (0.052% of Input + 1.0 mV) per °C
Crosstalk	
CH 0 to/from CH 1 ⁴	
10 MHz	<-80 dB
100 MHz	<-60 dB
Ext Trig to CH 0 or CH 1 ⁵	
10 MHz	<-80 dB
100 MHz	<-80 dB

Bandwidth and Transient Response

Bandwidth	(-3 dB),	warranted ^{6, 7}
-----------	----------	---------------------------

0.1 V input range	
50 Ω	165 MHz, typical 135 MHz minimum
1 ΜΩ	135 MHz, typical 110 MHz minimum

¹ Programmable vertical offset = 0 V.

² Within ± 5 °C of self-calibration temperature.

³ Use DC drift to calculate errors when temperature changes more than ±5 °C since the last selfcalibration.

⁴ Measured on one channel with test signal applied to another channel, with same range setting on both channels.

⁵ 10 V signal applied to external trigger channel. Applies to all ranges on CH 0 and CH 1.

⁶ Bandwidth for 0 to 30 °C. Reduce by 0.25% per °C above 30 °C for all input ranges. Filter off for all input ranges.

⁷ Normalized to 51 kHz.

All other input ranges		
50 Ω	340 MHz, typical	
	300 MHz minimum	
1 MΩ	300 MHz, typical	
	260 MHz minimum	
Rise/fall time ⁸		
0.1 V input range		
50 Ω	2.4 ns	
1 MΩ	2.8 ns ⁹	
All other input ranges		
50 Ω	1.2 ns	
1 MΩ	1.4 ns ⁹	
Bandwidth limit filter	20 MHz noise filter	
AC coupling cutoff (-3 dB) ¹⁰		
50 Ω	106 kHz	
1 ΜΩ	12 Hz	

⁸ Filter off.

⁹ 50 Ω terminator connected to front panel BNC connector. ¹⁰ 50 Ω source assumed.

Figure 3. PXI-5152 Step Response, 50 $\Omega,$ 10 $V_{pk\text{-}pk}$ through 0.2 $V_{pk\text{-}pk}$ Input Range, Measured

Spectral Characteristics

ENOB ¹¹		
Noise filter on	7.3	
Noise filter off	7.1	
Signal to Noise and Distortion (SI	NAD) ¹¹	
Noise filter on	45 dB	
Noise filter off	43 dB	

Figure 5. PXI-5152 Dynamic Performance, 50 $\Omega,$ 1 $V_{pk\text{-}pk}$ Range, 9.425 MHz, -1 dBFS Input Signal, Measured

¹¹ 1 V input range, 10 MHz, -1 dBFS input signal. Includes the 2nd through the 5th harmonics.

Noise

Range (V _{pk-pk})	Noise Filter On	Noise Filter Off
0.1	240 µV _{rms} (0.24% FS)	320 μV _{rms} (0.32% FS)
0.2	480 µV _{rms} (0.24% FS)	600 μV _{rms} (0.30% FS)
0.4	960 µV _{rms} (0.24% FS)	1.12 mV _{rms} (0.28% FS)
1	2.4 mV _{rms} (0.24% FS)	2.6 mV _{rms} (0.26% FS)
2	4.8 mV _{rms} (0.24% FS)	6.0 mV _{rms} (0.30% FS)
4	9.6 mV _{rms} (0.24% FS)	11.2 mV _{rms} (0.28% FS)
10	24 mV _{rms} (0.24% FS)	26 mV _{rms} (0.26% FS)
Channel-to-channel skew	<100 ps	

Table 2. RMS Noise¹²

 $^{^{12}}$ $\,$ 50 Ω terminator connected to input.

Sample Clock

Onboard clock (internal VCSO) ¹³
PFI 0 (front panel SMB connector)

Onboard Clock (Internal VCSO)

Sample rate range	
Real-time sampling (single shot) ¹⁴	15.26 kS/s to 1 GS/s
TIS ¹⁵ mode (single shot)	2 GS/s (single channel only)
Random interleaved sampling (RIS) mode ¹⁶	2 GS/s to 20 GS/s in increments of 1 GS/s (repetitive waveforms only)
Timebase accuracy	
Not phase-locked to Reference clock	± 30 ppm within ± 3 °C of external calibration temperature, plus an additional ± 7 ppm per °C outside of ± 3 °C of external calibration temperature, warranted
Phase-locked to Reference clock	Equal to the Reference clock accuracy ¹⁷
Sample clock delay range	±1 Sample clock period
Sample clock delay/adjustment resolution	≤5 ps
External Sample Clock	

Sources	PFI 0 (front panel SMB connector)	
Frequency range ¹⁸	350 MHz to 1 GHz	
Duty cycle tolerance	45% to 55%	

¹³ Internal Sample clock is locked to the Reference clock or derived from the onboard VCSO.

¹⁴ Divide by n decimation used for all rates less than 1 GS/s.

¹⁵ TIS is a type of real-time sampling that is sometimes called ping-pong.

¹⁶ RIS is a type of equivalent-time sampling.

¹⁷ Refer to your chassis specifications for the Reference clock accuracy.

¹⁸ Divide by *n* decimation available where $1 \le n \le 65,535$. For more information about the Sample clock and decimation, refer to the *NI High-Speed Digitizers Help*.

Phase-Locked Loop (PLL) Reference Clock

Sources	PXI_CLK10 (PXI backplane connector) PFI 0 (front panel SMB connector)
Frequency range ¹⁹	1 MHz to 20 MHz in 1 MHz increments Default: 10 MHz
Duty cycle tolerance	45% to 55%
Exported Reference Clock destinations	PXI_Trig <07> (backplane connector) PFI 1 (front panel SMB connector)

Sample Clock and Reference Clock Input (PFI 0, Front Panel Connector)

Input voltage range	Sine wave: 0.65 V _{pk-pk} to 2.8 V _{pk-pk} (0 dBm to 13 dBm)	
Maximum input overload	7 V _{rms} with Peaks \leq 10 V	
Impedance	50 Ω	
Coupling	AC	

Reference Clock Output (PFI 1, Front Panel Connector)

Output impedance	50 Ω
Logic type	3.3 V CMOS, except when exporting 5 V
Maximum drive current	±24 mA

¹⁹ The PLL Reference clock frequency must be accurate to ± 50 ppm.

Trigger

Trigger types ²⁰	Edge Window Hysteresis Video Digital Immediate Software	
Trigger sources	CH 0 CH 1 TRIG PFI <01> PXI_Trig <06> PXI Star Trigger Software	
Time resolution		
Onboard clock, time-to-digital conversion circuit (TDC) on	5 ps	
Onboard clock, TDC off	1 ns	
External clock, TDC off	External clock period	
Minimum rearm time ²¹		
TDC on	8 μs	
TDC off	1 μs	
Holdoff	From ream time up to $[(2^{32} - 1) \times \text{Sample clock period}]$	
Trigger delay	From 0 up to $[(2^{35} - 1) - Posttrigger samples] \times (1/Sample rate)$, in seconds	

²⁰ Refer to the following sources and the *NI High-Speed Digitizers Help* for more information about which sources are available for each trigger type.

²¹ Holdoff set to 0. Onboard Sample clock at maximum rate.

Analog Trigger

Trigger types	Edge Window Hysteresis
Sources	CH 0 (front panel BNC connector) CH 1 (front panel BNC connector) TRIG (front panel BNC connector)
Trigger level range ²²	
CH 0, CH 1	100% FS
TRIG (External trigger)	±5 V
Voltage resolution	8 bits (1 in 256)
Trigger level accuracy ²³	
CH 0, CH 1	$\pm 5\%$ FS up to 10 MHz, warranted
TRIG (External trigger)	± 1 V ($\pm 10\%$ FS) up to 10 MHz, warranted
Edge trigger sensitivity ²² , warranted	
CH 0, CH 1	10% FS
TRIG (External trigger)	1.0 Vpp
Trigger jitter ²³	≤10 ps _{rms} , typical ≤20 ps _{rms} , maximum
Trigger filters	
Low frequency reject (LF)	50 kHz
High frequency reject (HF)	50 KHz
Digital Trigger	
Trigger type	Digital
Sources	PXI_Trig <06> (backplane connector) PFI <01> (front panel SMB connectors)

External Trigger Input (Front Panel Connector)

Connector	BNC
Impedance	1 M\Omega in parallel with a nominal capacitance of 22 pF

PXI Star Trigger (backplane connector)

²² DC to 300 MHz.

²³ Within \pm 5 °C of self-calibration temperature.

Coupling	AC, DC	
AC coupling cutoff (-3 dB)	12 Hz	
Input voltage range	±5 V	
Maximum input overload	Peaks ≤42 V	

PFI 0 and PFI 1 (Programmable Function Interface, Front Panel Connectors)

Connector	SMB jack	
Direction	Bidirectional	
As an Input (Trigger)		
Destination	Start trigger (acquisition arm) Reference (stop) trigger Arm reference trigger Advance trigger	
Input impedance	150 kΩ, nominal	
V _{IH}	2.0 V	
V _{IL}	0.8 V	
Maximum input overload	-0.5 V to 5.5 V	
Maximum frequency	25 MHz	

As an Output (Event)

Sources	Start trigger (acquisition arm)	
	Reference (stop) trigger	
	End of record	
	Done (end of acquisition)	
	Probe compensation ²⁴	
Output impedance	50 Ω	
Logic type	3.3 V CMOS	
Maximum drive current	±24 mA	
Maximum frequency	25 MHz	

²⁴ 1 kHz, 50% duty cycle square wave. PFI 1 only.

Waveform Specifications

Real-Time and RIS Modes		Real-Time TIS Mode
8 MB standard (8 MS) per channel		8 MB standard (8 MS)
64 MB option (64 MS) per channel		64 MB option (64 MS)
256 MB option (256 MS) per channel		256 MB option (256 MS)
512 MB option (512 MS) per channel		512 MB option (512 MS)
Minimum record length	1 sample	
Number of pretrigger samples	Zero up	to full record length
Number of posttrigger samples	Zero up	to full record length
Maximum number of records in onboard mem	ory ²⁶	
8 MB per channel	32,768	
64 MB per channel	100,000	
256 MB per channel	100,000	
512 MB per channel	100,000	
Allocated onboard memory per record	[(Record rounded	l length × 1 byte/sample) + 400 bytes] up to next multiple of 128 bytes

Table 3. Onboard Memory Size

Calibration

External Calibration

External calibration calibrates the VCSO and the voltage reference. All calibration constants are stored in nonvolatile memory.

²⁵ Single-record mode and multiple-record mode.

²⁶ It is possible to exceed these numbers if you fetch records while acquiring data. For more information, refer to the *High-Speed Digitizers Help*.

Self-Calibration

Self-calibration is done on software command. The calibration corrects for gain, offset, triggering, and timing errors for all input ranges.

Calibration Specifications

Interval for external calibration	2 years
Warm-up time	15 minutes

Software

Driver Software

Driver support for the PXI-5152 was first available in NI-SCOPE 3.2.

NI-SCOPE is an IVI-compliant driver that allows you to configure, control, and calibrate the PXI-5152. NI-SCOPE provides application programming interfaces for many development environments.

Application Software

NI-SCOPE provides programming interfaces, documentation, and examples for the following application development environments:

- LabVIEW
- LabWindowsTM/CVITM
- Measurement Studio
- Microsoft Visual C/C++
- .NET (C# and VB.NET)

Interactive Soft Front Panel and Configuration

The NI-SCOPE Soft Front Panel (SFP) allows interactive control of the PXI-5152.

Interactive control of the PXI-5152 was first available in NI-SCOPE SFP version 3.2. The NI-SCOPE SFP is included on the NI-SCOPE media.

NI Measurement Automation Explorer (MAX) also provides interactive configuration and test tools for the PXI-5152. MAX is included on the NI-SCOPE media.

TClk Specifications

You can use the NI TClk synchronization method and the NI-TClk driver to align the Sample clocks on any number of supported devices, in one or more chassis. For more information about TClk synchronization, refer to the *NI-TClk Synchronization Help*, which is located within the *NI High-Speed Digitizers Help*. For other configurations, including multichassis systems, contact NI Technical Support at *ni.com/support*.

Intermodule SMC Synchronization Using NI-TClk for Identical Modules

Synchronization specifications are valid under the following conditions:

- All modules are installed in one NI PXI-1042 chassis
- The NI-TClk driver is used to align the Sample clocks of each module.
- All parameters are set to identical values for each module.
- Modules are synchronized without using an external Sample clock.
- Sample clock set to 1 GS/s and all filters are disabled.

Note Although you can use NI-TClk to synchronize non-identical SMC-based modules, these specifications apply only to synchronizing identical modules.

Skew ²⁷	500 ps
Skew after manual adjustment	≤5 ps
Sample clock delay/adjustment resolution	≤5 ps

Power

Current draw		
+3.3 VDC	1.1 A	
+5 VDC	1.9 A	
+12 VDC	500 mA	
-12 VDC	210 mA	
Total power	21.65 W	

Physical

Dimensions	3U, one-slot, PXI module
	$21.6 \text{ cm} \times 2.0 \text{ cm} \times 13.0 \text{ cm}$
	$(8.5 \text{ in} \times 0.8 \text{ in} \times 5.1 \text{ in})$
Weight	462 g (16.3 oz)

²⁷ Caused by clock and analog path delay differences. No manual adjustment performed.

Environment

Environment

Maximum altitude	2,000 m (at 25 °C ambient temperature)
Pollution Degree	2

Indoor use only.

Operating Environment

0 °C to 55 °C (Tested in accordance with IEC 60068-2-1 and IEC 60068-2-2.)
10% to 90%, noncondensing (Tested in accordance with IEC 60068-2-56.)
-40 °C to 71 °C (Tested in accordance with IEC 60068-2-1 and IEC 60068-2-2.)
5% to 95%, noncondensing (Tested in accordance with IEC 60068-2-56.)
30 g peak, half-sine, 11 ms pulse (Tested in accordance with IEC 60068-2-27. Test profile developed in accordance with MIL-PRF-28800F.)

Random	vibration
--------	-----------

Operating	5 Hz to 500 Hz, 0.31 g _{rms} (Tested in accordance with IEC 60068-2-64.)
Nonoperating	5 Hz to 500 Hz, 2.46 g _{rms} (Tested in accordance with IEC 60068-2-64. Test profile exceeds the requirements of MIL-PRF-28800F, Class 3.)

Compliance and Certifications

Safety

This product is designed to meet the requirements of the following electrical equipment safety standards for measurement, control, and laboratory use:

- IEC 61010-1, EN 61010-1
- UL 61010-1, CSA C22.2 No. 61010-1

Note For UL and other safety certifications, refer to the product label or the *Online Product Certification* section.

Electromagnetic Compatibility

This product meets the requirements of the following EMC standards for electrical equipment for measurement, control, and laboratory use:

- EN 61326-1 (IEC 61326-1): Class A emissions; Basic immunity
- EN 55011 (CISPR 11): Group 1, Class A emissions
- EN 55022 (CISPR 22): Class A emissions
- EN 55024 (CISPR 24): Immunity
- AS/NZS CISPR 11: Group 1, Class A emissions
- AS/NZS CISPR 22: Class A emissions
- FCC 47 CFR Part 15B: Class A emissions
- ICES-001: Class A emissions

Note In the United States (per FCC 47 CFR), Class A equipment is intended for use in commercial, light-industrial, and heavy-industrial locations. In Europe, Canada, Australia, and New Zealand (per CISPR 11), Class A equipment is intended for use only in heavy-industrial locations.

Note Group 1 equipment (per CISPR 11) is any industrial, scientific, or medical equipment that does not intentionally generate radio frequency energy for the treatment of material or inspection/analysis purposes.

Note For EMC declarations, certifications, and additional information, refer to the *Online Product Certification* section.

CE Compliance $C \in$

This product meets the essential requirements of applicable European Directives, as follows:

- 2014/35/EU; Low-Voltage Directive (safety)
- 2014/30/EU; Electromagnetic Compatibility Directive (EMC)

Online Product Certification

Refer to the product Declaration of Conformity (DoC) for additional regulatory compliance information. To obtain product certifications and the DoC for this product, visit *ni.com/ certification*, search by model number or product line, and click the appropriate link in the Certification column.

Environmental Management

NI is committed to designing and manufacturing products in an environmentally responsible manner. NI recognizes that eliminating certain hazardous substances from our products is beneficial to the environment and to NI customers.

For additional environmental information, refer to the *Minimize Our Environmental Impact* web page at *ni.com/environment*. This page contains the environmental regulations and directives with which NI complies, as well as other environmental information not included in this document.

Waste Electrical and Electronic Equipment (WEEE)

X

EU Customers At the end of the product life cycle, all NI products must be disposed of according to local laws and regulations. For more information about how to recycle NI products in your region, visit *ni.com/environment/weee*.

电子信息产品污染控制管理办法(中国 RoHS)

中国客户 National Instruments 符合中国电子信息产品中限制使用某些有害物质指令(RoHS)。关于 National Instruments 中国 RoHS 合规性信息,请登录ni.com/environment/rohs_china。(For information about China RoHS compliance, go to ni.com/environment/rohs_china.)

Information is subject to change without notice. Refer to the *NI Trademarks and Logo Guidelines* at ni.com/trademarks for information on NI trademarks. Other product and company names mentioned herein are trademarks or trade names of their respective companies. For patents covering NI products/ketchology, refer to the appropriate location: Help»Patents in your software, the patents.txt file on your media, or the *National Instruments Patent Notice* at ni.com/patents. You can find information about end-user license agreements (EULAs) and third-party legal notices in the readme file for your NI product.Refer to the *Export Compliance Information* at ni.com/legal/export_compliance for the NI global trade compliance policy and how to obtain relevant HTS codes, ECCNs, and other import/export data. NI MAKES NO EXPRESS OR IMPLIED WARRANTIES AS TO THE ACCURACY OF THE INFORMATION CONTAINED HEREIN AND SHALL NOT BE LIABLE FOR ANY ERRORS. U.S. Government Customers: The data contained in this manual was developed at private expense and is subject to the applicable limited rights and restricted data rights as set forth in FAR 52.227-7014, and DFAR 252.227-7014.

© 2008-2019 National Instruments. All rights reserved.