

 PXI-7334

https://www.apexwaves.com/modular-systems/national-instruments/ni-73xx/PXI-7334?aw_referrer=pdf
https://www.apexwaves.com/modular-systems/national-instruments/ni-73xx/PXI-7334?aw_referrer=pdf
https://www.apexwaves.com/modular-systems/national-instruments/ni-73xx/PXI-7334?aw_referrer=pdf

Motion Control

NI-Motion
TM

 User Manual

NI-Motion User Manual

November 2005

371242B-01

support

Worldwide Technical Support and Product Information

ni.com

National Instruments Corporate Headquarters

11500 North Mopac Expressway Austin, Texas 78759-3504 USA Tel: 512 683 0100

Worldwide Offices

Australia 1800 300 800, Austria 43 0 662 45 79 90 0, Belgium 32 0 2 757 00 20, Brazil 55 11 3262 3599,

Canada 800 433 3488, China 86 21 6555 7838, Czech Republic 420 224 235 774, Denmark 45 45 76 26 00,

Finland 385 0 9 725 725 11, France 33 0 1 48 14 24 24, Germany 49 0 89 741 31 30, India 91 80 51190000,

Israel 972 0 3 6393737, Italy 39 02 413091, Japan 81 3 5472 2970, Korea 82 02 3451 3400,

Lebanon 961 0 1 33 28 28, Malaysia 1800 887710, Mexico 01 800 010 0793, Netherlands 31 0 348 433 466,

New Zealand 0800 553 322, Norway 47 0 66 90 76 60, Poland 48 22 3390150, Portugal 351 210 311 210,

Russia 7 095 783 68 51, Singapore 1800 226 5886, Slovenia 386 3 425 4200, South Africa 27 0 11 805 8197,

Spain 34 91 640 0085, Sweden 46 0 8 587 895 00, Switzerland 41 56 200 51 51, Taiwan 886 02 2377 2222,

Thailand 662 278 6777, United Kingdom 44 0 1635 523545

For further support information, refer to the Technical Support and Professional Services appendix. To comment

on National Instruments documentation, refer to the National Instruments Web site at ni.com/info and enter

the info code feedback.

© 2003–2005 National Instruments Corporation. All rights reserved.

 Important Information

Warranty
The media on which you receive National Instruments software are warranted not to fail to execute programming instructions, due to defects
in materials and workmanship, for a period of 90 days from date of shipment, as evidenced by receipts or other documentation. National
Instruments will, at its option, repair or replace software media that do not execute programming instructions if National Instruments receives
notice of such defects during the warranty period. National Instruments does not warrant that the operation of the software shall be
uninterrupted or error free.

A Return Material Authorization (RMA) number must be obtained from the factory and clearly marked on the outside of the package before
any equipment will be accepted for warranty work. National Instruments will pay the shipping costs of returning to the owner parts which are
covered by warranty.

National Instruments believes that the information in this document is accurate. The document has been carefully reviewed for technical
accuracy. In the event that technical or typographical errors exist, National Instruments reserves the right to make changes to subsequent
editions of this document without prior notice to holders of this edition. The reader should consult National Instruments if errors are suspected.
In no event shall National Instruments be liable for any damages arising out of or related to this document or the information contained in it.

EXCEPT AS SPECIFIED HEREIN, NATIONAL INSTRUMENTS MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AND SPECIFICALLY DISCLAIMS ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. CUSTOMER’S RIGHT TO RECOVER DAMAGES CAUSED BY FAULT OR NEGLIGENCE ON THE PART OF
NATIONAL INSTRUMENTS SHALL BE LIMITED TO THE AMOUNT THERETOFORE PAID BY THE CUSTOMER. NATIONAL INSTRUMENTS WILL NOT BE LIABLE FOR
DAMAGES RESULTING FROM LOSS OF DATA, PROFITS, USE OF PRODUCTS, OR INCIDENTAL OR CONSEQUENTIAL DAMAGES, EVEN IF ADVISED OF THE POSSIBILITY
THEREOF. This limitation of the liability of National Instruments will apply regardless of the form of action, whether in contract or tort, including
negligence. Any action against National Instruments must be brought within one year after the cause of action accrues. National Instruments
shall not be liable for any delay in performance due to causes beyond its reasonable control. The warranty provided herein does not cover
damages, defects, malfunctions, or service failures caused by owner’s failure to follow the National Instruments installation, operation, or
maintenance instructions; owner’s modification of the product; owner’s abuse, misuse, or negligent acts; and power failure or surges, fire,
flood, accident, actions of third parties, or other events outside reasonable control.

Copyright
Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or mechanical, including photocopying,
recording, storing in an information retrieval system, or translating, in whole or in part, without the prior written consent of National
Instruments Corporation.

Trademarks
National Instruments, NI, ni.com, and LabVIEW are trademarks of National Instruments Corporation. Refer to the Terms of Use section
on ni.com/legal for more information about National Instruments trademarks.

FireWire® is the registered trademark of Apple Computer, Inc. Other product and company names mentioned herein are trademarks or trade
names of their respective companies.

Patents
For patents covering National Instruments products, refer to the appropriate location: Help»Patents in your software, the patents.txt file
on your CD, or ni.com/patents.

WARNING REGARDING USE OF NATIONAL INSTRUMENTS PRODUCTS
(1) NATIONAL INSTRUMENTS PRODUCTS ARE NOT DESIGNED WITH COMPONENTS AND TESTING FOR A LEVEL OF
RELIABILITY SUITABLE FOR USE IN OR IN CONNECTION WITH SURGICAL IMPLANTS OR AS CRITICAL COMPONENTS IN
ANY LIFE SUPPORT SYSTEMS WHOSE FAILURE TO PERFORM CAN REASONABLY BE EXPECTED TO CAUSE SIGNIFICANT
INJURY TO A HUMAN.

(2) IN ANY APPLICATION, INCLUDING THE ABOVE, RELIABILITY OF OPERATION OF THE SOFTWARE PRODUCTS CAN BE
IMPAIRED BY ADVERSE FACTORS, INCLUDING BUT NOT LIMITED TO FLUCTUATIONS IN ELECTRICAL POWER SUPPLY,
COMPUTER HARDWARE MALFUNCTIONS, COMPUTER OPERATING SYSTEM SOFTWARE FITNESS, FITNESS OF COMPILERS
AND DEVELOPMENT SOFTWARE USED TO DEVELOP AN APPLICATION, INSTALLATION ERRORS, SOFTWARE AND
HARDWARE COMPATIBILITY PROBLEMS, MALFUNCTIONS OR FAILURES OF ELECTRONIC MONITORING OR CONTROL
DEVICES, TRANSIENT FAILURES OF ELECTRONIC SYSTEMS (HARDWARE AND/OR SOFTWARE), UNANTICIPATED USES OR
MISUSES, OR ERRORS ON THE PART OF THE USER OR APPLICATIONS DESIGNER (ADVERSE FACTORS SUCH AS THESE ARE
HEREAFTER COLLECTIVELY TERMED “SYSTEM FAILURES”). ANY APPLICATION WHERE A SYSTEM FAILURE WOULD
CREATE A RISK OF HARM TO PROPERTY OR PERSONS (INCLUDING THE RISK OF BODILY INJURY AND DEATH) SHOULD
NOT BE RELIANT SOLELY UPON ONE FORM OF ELECTRONIC SYSTEM DUE TO THE RISK OF SYSTEM FAILURE. TO AVOID
DAMAGE, INJURY, OR DEATH, THE USER OR APPLICATION DESIGNER MUST TAKE REASONABLY PRUDENT STEPS TO
PROTECT AGAINST SYSTEM FAILURES, INCLUDING BUT NOT LIMITED TO BACK-UP OR SHUT DOWN MECHANISMS.
BECAUSE EACH END-USER SYSTEM IS CUSTOMIZED AND DIFFERS FROM NATIONAL INSTRUMENTS' TESTING
PLATFORMS AND BECAUSE A USER OR APPLICATION DESIGNER MAY USE NATIONAL INSTRUMENTS PRODUCTS IN
COMBINATION WITH OTHER PRODUCTS IN A MANNER NOT EVALUATED OR CONTEMPLATED BY NATIONAL
INSTRUMENTS, THE USER OR APPLICATION DESIGNER IS ULTIMATELY RESPONSIBLE FOR VERIFYING AND VALIDATING
THE SUITABILITY OF NATIONAL INSTRUMENTS PRODUCTS WHENEVER NATIONAL INSTRUMENTS PRODUCTS ARE
INCORPORATED IN A SYSTEM OR APPLICATION, INCLUDING, WITHOUT LIMITATION, THE APPROPRIATE DESIGN,
PROCESS AND SAFETY LEVEL OF SUCH SYSTEM OR APPLICATION.

© National Instruments Corporation v NI-Motion User Manual

Contents

About This Manual
Conventions ...xiii

Documentation and Examples ...xiv

PART I
Introduction

Chapter 1
Introduction to NI-Motion

About NI-Motion ...1-1

NI-Motion Architecture ...1-1

Software and Hardware Interaction...1-2

NI Motion Controller Architecture..1-2

NI 73xx Architecture ...1-2

NI Motion Controller Functional Architecture..1-4

NI SoftMotion Controller Architecture...1-7

NI SoftMotion Controller Communication Watchdog ..1-9

Chapter 2
Creating NI-Motion Applications

Creating a Generic NI-Motion Application ...2-1

Adding Measurements to an NI-Motion Application ..2-2

PART II
Configuring Motion Control

Chapter 3
Tuning Servo Systems

NI SoftMotion Controller Considerations ...3-1

NI SoftMotion Controller for CANopen ...3-1

NI SoftMotion Controller for Ormec ..3-1

Using Control Loops to Tune Servo Motors ...3-1

Control Loop ...3-2

PID Loop Descriptions..3-4

Velocity Feedback ...3-9

NI Motion Controllers with Velocity Amplifiers..3-10

Contents

NI-Motion User Manual vi ni.com

PART III
Programming with NI-Motion

Chapter 4
What You Need to Know about Moves

Move Profiles .. 4-1

Trapezoidal.. 4-1

S-Curve ... 4-2

Basic Moves ... 4-2

Coordinate Space .. 4-3

Multi-Starts versus Coordinate Spaces... 4-3

Trajectory Parameters ... 4-4

NI 73xx Floating-Point versus Fixed-Point 4-4

NI 73xx Time Base ... 4-5

NI 73xx Arc Move Limitations ... 4-13

Timing Loops .. 4-14

Status Display ... 4-14

Graphing Data ... 4-14

Event Polling... 4-14

Chapter 5
Straight-Line Moves

Position-Based Straight-Line Moves... 5-1

Straight-Line Move Algorithm ... 5-1

C/C++ Code .. 5-5

1D Straight-Line Move Code ... 5-5

2D Straight-Line Move Code ... 5-7

Velocity-Based Straight-Line Moves .. 5-10

Algorithm .. 5-11

LabVIEW Code... 5-13

C/C++ Code .. 5-13

Velocity Profiling Using Velocity Override.. 5-17

Algorithm .. 5-18

LabVIEW Code... 5-19

C/C++ Code .. 5-20

Contents

© National Instruments Corporation vii NI-Motion User Manual

Chapter 6
Arc Moves

Circular Arcs..6-1

Arc Move Algorithm ...6-3

LabVIEW Code ...6-4

C/C++ Code...6-4

Spherical Arcs..6-7

Algorithm ..6-9

LabVIEW Code ...6-10

C/C++ Code...6-10

Helical Arcs ...6-13

Algorithm ..6-14

LabVIEW Code ...6-15

C/C++ Code...6-15

Chapter 7
Contoured Moves

Overview..7-1

Arbitrary Contoured Moves...7-2

Contoured Move Algorithm ..7-3

Absolute versus Relative Contouring ...7-4

LabVIEW Code ...7-5

C/C++ Code...7-6

Chapter 8
Reference Moves

Find Reference Move...8-1

Reference Move Algorithm...8-2

LabVIEW Code ...8-3

C/C++ Code...8-3

Chapter 9
Blending Moves

Blending...9-1

Superimpose Two Moves ..9-2

Blend after First Move Is Complete ..9-3

Blend after Delay...9-4

Blending Algorithm...9-5

LabVIEW Code ...9-6

C/C++ Code...9-7

Contents

NI-Motion User Manual viii ni.com

Chapter 10
Electronic Gearing and Camming

Gearing .. 10-1

Algorithm .. 10-2

Gear Master .. 10-4

LabVIEW Code... 10-5

C/C++ Code .. 10-5

Camming ... 10-8

Algorithm .. 10-11

Camming Table... 10-12

Slave Offset .. 10-15

Master Offset .. 10-17

LabVIEW Code... 10-19

C/C++ Code .. 10-19

Chapter 11
Acquiring Time-Sampled Position and Velocity Data

Algorithm .. 11-2

LabVIEW Code ... 11-4

C/C++ Code... 11-4

Chapter 12
Synchronization

Absolute Breakpoints .. 12-2

Buffered Breakpoints (NI 7350 only) ... 12-3

Buffered Breakpoint Algorithm.. 12-4

LabVIEW Code .. 12-5

C/C++ Code.. 12-5

Single Position Breakpoints .. 12-8

Single Position Breakpoint Algorithm ... 12-8

LabVIEW Code .. 12-9

C/C++ Code.. 12-10

Relative Position Breakpoints ... 12-12

Relative Position Breakpoints Algorithm ... 12-13

LabVIEW Code... 12-14

C/C++ Code .. 12-14

Periodically Occurring Breakpoints .. 12-16

Periodic Breakpoints (NI 7350 only) .. 12-17

Periodic Breakpoint Algorithm .. 12-17

LabVIEW Code .. 12-18

C/C++ Code.. 12-18

Contents

© National Instruments Corporation ix NI-Motion User Manual

Modulo Breakpoints (NI 7330, NI 7340 and NI 7390 only) ...12-21

Modulo Breakpoints Algorithm ..12-23

LabVIEW Code ...12-24

C/C++ Code...12-25

High-Speed Capture...12-27

Buffered High-Speed Capture (NI 7350 only) ..12-27

Buffered High-Speed Capture Algorithm ...12-28

LabVIEW Code ...12-29

C/C++ Code...12-29

Non-Buffered High-Speed Capture...12-32

High-Speed Capture Algorithm...12-33

LabVIEW Code ...12-34

C/C++ Code...12-35

Real-Time System Integration Bus (RTSI) ...12-37

RTSI Implementation on the Motion Controller ...12-38

Position Breakpoints Using RTSI ...12-39

Encoder Pulses Using RTSI ..12-39

Software Trigger Using RTSI ...12-39

High-Speed Capture Input Using RTSI...12-40

Chapter 13
Torque Control

Analog Feedback ...13-1

Torque Control Using Analog Feedback Algorithm13-3

LabVIEW Code ...13-4

C/C++ Code...13-5

Monitoring Force ...13-8

Torque Control Using Monitoring Force Algorithm.......................................13-9

LabVIEW Code ...13-10

C/C++ Code...13-11

Speed Control Based on Analog Value ...13-14

Speed Control Based on Analog Feedback Algorithm....................................13-14

LabVIEW Code ...13-15

C/C++ Code...13-16

Chapter 14
Onboard Programs

Using Onboard Programs with the NI SoftMotion Controller14-1

Using Onboard Programs with NI 73xx Motion Controllers ...14-2

Writing Onboard Programs ...14-3

Algorithm ..14-4

LabVIEW Code ...14-5

Contents

NI-Motion User Manual x ni.com

C/C++ Code .. 14-6

Running, Stopping, and Pausing Onboard Programs .. 14-8

Running an Onboard Program .. 14-8

Stopping an Onboard Program.. 14-8

Pausing/Resuming an Onboard Program .. 14-8

Automatic Pausing.. 14-9

Single-Stepping Using Pause.. 14-9

Conditionally Executing Onboard Programs... 14-9

Onboard Program Conditional Execution Algorithm 14-11

LabVIEW Code... 14-12

C/C++ Code .. 14-12

Using Onboard Memory and Data .. 14-14

Algorithm .. 14-15

LabVIEW Code... 14-16

C/C++ Code .. 14-17

Branching Onboard Programs ... 14-19

Onboard Program Algorithm .. 14-20

LabVIEW Code... 14-21

C/C++ Code .. 14-22

Math Operations .. 14-24

Indirect Variables .. 14-24

Onboard Buffers .. 14-25

Algorithm .. 14-26

Synchronizing Host Applications with Onboard Programs .. 14-26

LabVIEW Code... 14-28

C/C++ Code .. 14-30

Onboard Subroutines ... 14-34

Algorithm .. 14-34

LabVIEW Code... 14-35

C/C++ Code .. 14-38

Automatically Starting Onboard Programs ... 14-42

Changing a Time Slice .. 14-42

PART IV
Creating Applications Using NI-Motion

Chapter 15
Scanning

Connecting Straight-Line Move Segments ... 15-1

Raster Scanning Using Straight Lines Algorithm... 15-2

LabVIEW Code... 15-3

C/C++ Code .. 15-4

Contents

© National Instruments Corporation xi NI-Motion User Manual

Blending Straight-Line Move Segments..15-7

Raster Scanning Using Blended Straight Lines Algorithm.............................15-8

LabVIEW Code ...15-9

C/C++ Code...15-10

User-Defined Scanning Path..15-13

User-Defined Scanning Path Algorithm..15-15

LabVIEW Code ...15-16

C/C++ Code...15-17

Chapter 16
Rotating Knife

Solution ..16-1

Algorithm ..16-3

LabVIEW Code ...16-4

C/C++ Code...16-5

Appendix A
Sinusoidal Commutation for Brushless Servo Motion Control

Appendix B
Initializing the Controller Programmatically

Appendix C
Using the Motion Controller with the LabVIEW Real-Time Module

Appendix D
Technical Support and Professional Services

Glossary

Index

© National Instruments Corporation xiii NI-Motion User Manual

About This Manual

This manual provides information about the NI-Motion driver software,

including background, configuration, and programming information.

The purpose of this manual is to provide a basic understanding of the

NI-Motion driver software, and provide programming steps and examples

to help you develop NI-Motion applications.

This manual is intended for experienced LabVIEW, C/C++, or other

developers. Code instructions and examples assume a working knowledge

of the given programming language. This manual also assumes a general

knowledge of motion control terminology and development requirements.

This manual pertains to all NI motion controllers that use the NI-Motion

driver software.

Conventions

The following conventions appear in this manual:

<> Angle brackets that contain numbers separated by an ellipsis represent a

range of values associated with a bit or signal name—for example,

AO <3..0>.

[] Square brackets enclose optional items—for example, [response].

» The » symbol leads you through nested menu items and dialog box options

to a final action. The sequence File»Page Setup»Options directs you to

pull down the File menu, select the Page Setup item, and select Options

from the last dialog box.

This icon denotes a tip, which alerts you to advisory information.

This icon denotes a note, which alerts you to important information.

This icon denotes a caution, which advises you of precautions to take to

avoid injury, data loss, or a system crash.

bold Bold text denotes items that you must select or click in the software, such

as menu items and dialog box options. Bold text also denotes parameter

names.

About This Manual

NI-Motion User Manual xiv ni.com

italic Italic text denotes variables, emphasis, a cross reference, or an introduction

to a key concept. Italic text also denotes text that is a placeholder for a word

or value that you must supply.

monospace Text in this font denotes text or characters that you should enter from the

keyboard, sections of code, programming examples, and syntax examples.

This font is also used for the proper names of disk drives, paths, directories,

programs, subprograms, subroutines, device names, functions, operations,

variables, filenames, and extensions.

monospace bold Monospace bold text indicates a portion of code with structural

significance.

monospace italic Monospace italic text indicates a portion of code that is commented out.

Documentation and Examples

In addition to this manual, NI-Motion includes the following

documentation to help you create motion applications:

• Getting Started with NI-Motion for NI 73xx Motion Controllers—This

document provides installation instructions and general information

about the NI-Motion product.

• Getting Started: NI SoftMotion Controller for Ormec

ServoWire SM Drives—Refer to this document for information about

getting started with the NI SoftMotion Controller for Ormec.

• Getting Started: NI SoftMotion Controller for Copley CANopen

Drives—Refer to this document for information about getting started

with the NI SoftMotion Controller for CANopen.

• NI-Motion VI Help—Refer to this document for specific information

about NI-Motion LabVIEW VIs.

• NI-Motion Function Help—Refer to this document for specific

information about NI-Motion C/C++ functions.

• Measurement & Automation Explorer Help for Motion—Refer to this

document for configuration information.

• NI-Motion ReadMe—Refer to this HTML document for information

about hardware and software installation and information about

changes to the NI-Motion driver software in the current version. This

document also contains last-minute information about NI-Motion.

• Application notes—For information about advanced NI-Motion

concepts and applications, visit ni.com/appnotes.nsf/.

About This Manual

© National Instruments Corporation xv NI-Motion User Manual

• NI Developer Zone (NIDZ)—Visit the NI Developer Zone, at

ni.com/zone, for example programs, tutorials, technical

presentations, the Instrument Driver Network, a measurement

glossary, an online magazine, a product advisor, and a community area

where you can share ideas, questions, and source code with motion

developers around the world.

• Motion Hardware Advisor—Visit the National Instruments Motion

Hardware Advisor at ni.com/devzone/advisors/motion/ to

select motors and stages appropriate to the motion control application.

In addition to the NI Developer Zone, you can find NI-Motion C/C++

and Visual Basic programming examples in the NI-Motion\

FlexMotion\Examples folder where you installed NI-Motion. The

default directory is Program Files\National Instruments\

NI-Motion.

You can find LabVIEW example programs under examples\Motion

in the directory where you installed LabVIEW. You can find

LabWindows™/CVI™ examples under samples\Motion in the directory

where you installed LabWindows/CVI.

You can find the NI-Motion C/C++ and LabVIEW example code

referenced in this manual in the NI-Motion\Documentation\

Examples\NI-Motion User Manual folder where you installed

NI-Motion.

© National Instruments Corporation I-1 NI-Motion User Manual

Part I

Introduction

This user manual provides information about the NI-Motion driver

software, motion control setup, and specific task-based instructions for

creating motion control applications using the LabVIEW and C/C++

application development environments.

Part I covers the following topics:

• Introduction to NI-Motion

• Creating NI-Motion Applications

© National Instruments Corporation 1-1 NI-Motion User Manual

1
Introduction to NI-Motion

About NI-Motion

NI-Motion is the driver software for National Instruments 73xx motion

controllers and the NI SoftMotion Controller. You can use NI-Motion to

create motion control applications using the included library of LabVIEW

VIs and C/C++ functions.

National Instruments also offers the Motion Assistant and NI-Motion

development tools for Visual Basic.

NI-Motion Architecture

The NI-Motion driver software architecture is based on the interaction

between the NI motion controllers and a host computer. This interaction

includes the hardware and software interface and the physical and

functional architecture of the NI motion controllers.

Chapter 1 Introduction to NI-Motion

NI-Motion User Manual 1-2 ni.com

Software and Hardware Interaction

Figure 1-1. NI Motion Control Hardware and Software Interaction

Note The last block in Figure 1-1 is not applicable to the NI SoftMotion Controller.

NI Motion Controller Architecture
This section includes information about the architecture for both the 73xx

family of NI motion controllers and the NI SoftMotion Controller.

NI 73xx Architecture
NI 73xx controllers use a dual-processor architecture. The two processors,

a central processing unit (CPU) and a digital signal processor (DSP), form

the backbone of the NI motion controller. The controller plugs into a

variety of slots, including PCI slots, or to a PC using a high-speed serial

interface, such as IEEE 1394 (FireWire®).

NI Motion Assistant
Graphical Prototyping Tool

Creates ADE
Code

Application Development Environments:
LabVIEW, Visual Basic, and C++

Measurement and
Automation Explorer
Configuration Utility

NI-Motion Driver Software

NI Motion Controller

Chapter 1 Introduction to NI-Motion

© National Instruments Corporation 1-3 NI-Motion User Manual

The controller CPU is a 32-bit micro-controller running an embedded real

time, multitasking operating system. This CPU offers the performance and

determinism needed to solve most complex motion applications. The CPU

performs command execution, host synchronization, I/O reaction, and

system supervision.

The DSP has the primary responsibility of fast closed-loop control with

simultaneous position, velocity, and trajectory maintenance on multiple

axes. The DSP also closes the position and velocity loops, and directly

commands the torque to the drive or amplifier.

Motion I/O occurs in hardware on an FPGA and consists of

limit/home switch detection, position breakpoint, and high-speed capture.

This ensures very low latencies in the range of hundreds of nanoseconds

for breakpoints and high-speed captures. Refer to Chapter 12,

Synchronization, for information about breakpoints and high-speed

capture.

The motion controller processor is monitored by a watchdog timer, which

is hardware that can be used to automatically detect software anomalies and

reset the processor if any occur. The watchdog timer checks for proper

processor operation. If the firmware on the motion controller is unable to

process functions within 62 ms, the watchdog timer resets the motion

controller and disallows further communications until you explicitly reset

the motion controller. This ensures the real-time operation of the motion

control system. The following functions may take longer than 62 ms to

process.

• Save Defaults

• Reset Defaults

• Enable Auto Start

• Object Memory Management

• Clear Buffer

• End Storage

These functions are marked as non-real-time functions. Refer to the

NI-Motion Function Help or the NI-Motion VI Help for more information.

Chapter 1 Introduction to NI-Motion

NI-Motion User Manual 1-4 ni.com

Figure 1-2 illustrates the physical architecture of the NI motion controller

hardware.

Figure 1-2. Physical NI Motion Controller Architecture

Tip Because the NI SoftMotion Controller is not a hardware device, information about

its architecture is not covered in this section. Refer to the NI SoftMotion Controller

Architecture section for information about the functional architecture that is specific to the

NI SoftMotion Controller.

NI Motion Controller Functional Architecture
Functionally, the architecture of the NI 73xx motion controllers and the

NI SoftMotion Controller is generally divided into four components:

supervisory control, trajectory generator, control loop, and motion I/O. For

the NI SoftMotion Controller, the motion I/O component is separate from

the controller. Refer to Figure 1-3 and Figure 1-4 for an illustration of how

the components of the 73xx and NI SoftMotion Controller interact.

Host Computer

PC

Microprocessor
Running a Real-Time

Operating System

Supervisory/
Communications/

User-defined Onboard
Programs

Digital Signal
Processor (DSP)

Control Loop and
Trajectory Generation

Watchdog
Timer

FPGAs

Encoders and Motion I/O

NI Motion Controller

Chapter 1 Introduction to NI-Motion

© National Instruments Corporation 1-5 NI-Motion User Manual

Figure 1-3 shows the components of the NI 73xx motion controllers.

Figure 1-3. Typical NI 73xx Motion Controller Functional Architecture

Figure 1-4 shows the components of the NI SoftMotion controller.

Figure 1-4. NI SoftMotion Controller Functional Architecture

Bus

Control Loop

Trajectory Generation

Supervisory Control

To drive

From

feedback

& sensors

Typical NI 73xx Motion Controller Architecture

Microcontroller running RTOS/DSPs/FPGAs

Host

A
n
a
lo

g
 &

 D
ig

it
a
l
I/
O

Bus

Control Loop

Trajectory Generation

Supervisory Control

To drive

From

feedback

& sensors

NI SoftMotion Controller Architecture

Any CPU on a real-time environment

Host

A
n
a
lo

g
 &

 D
ig

it
a
l
I/
O

Software is separate from the I/O

Chapter 1 Introduction to NI-Motion

NI-Motion User Manual 1-6 ni.com

Figure 1-5 illustrates the functional architecture of NI motion controllers.

Figure 1-5. NI Motion Controller Functional Architecture

The following list describes how each component of the 73xx controllers

and the NI SoftMotion Controller functions:

• Supervisory control—Performs all the command sequencing and

coordination required to carry out the specified operation

– System initialization, which includes homing to a zero position

– Event handling, which includes electronic gearing, triggering

outputs based on position, updating profiles based on user defined

events, and so on

– Fault Detection, which includes stopping moves on a limit switch

encounter, safe system reaction to emergency stop or drive faults,

watchdog, and so on

• Trajectory generator provides path planning based on the profile

specified by the user

• Control loop—Performs fast, closed-loop control with simultaneous

position, velocity, and trajectory maintenance on one or more axes

Trajectory Generation

(ms)

V
e

lo
c
it
y

Time
dt

New

Set Point

Updated
Updates Trajectory

Generator Based on

I/O And User

Response

Cruise

D
e
c
e
lA

c
c
e
l

Je
rk Jerk

Control Loop (µs)

(with Interpolation)
F

e
e

d
b

a
c
k

Interpolation PID

Sensor

Output

Supervisory Control

(ms)

User API

Interface

I/O

Supervisory

Control
Commands for

Trajectory Generator

Event Monitoring Interface

Set Point

Chapter 1 Introduction to NI-Motion

© National Instruments Corporation 1-7 NI-Motion User Manual

The control loop handles closing the position/velocity loop based on

feedback, and it defines the response and stability of the system. For

stepper systems, the control loop is replaced with a step generation

component. To enable the control loop to execute faster than the

trajectory generation, an interpolation component, or spline engine, the

control loop interpolates between setpoints calculated by the trajectory

generator. Refer to Figure 1-5 for an illustration of the spline engine.

• Motion I/O—Analog and digital I/O that sends and receives signals

from the rest of the motion control system. Typically, the analog output

is used as a command signal for the drive, and the digital I/O is used

for quadrature encoder signals as feedback from the motor. The motion

I/O performs position breakpoint and high speed capture. Also, the

supervisory control uses the motion I/O to achieve certain required

functionality, such as reacting to limit switches and creating the

movement modes needed to initialize the system.

NI SoftMotion Controller Architecture
The NI-Motion architecture for the NI SoftMotion Controller uses standard

PC-based platforms and open standards to connect intelligent drives to a

real-time host. In this architecture, the software components of the motion

controller run on a real-time host and all I/O is implemented in the drives.

This separation of I/O from the motion controller software components

helps to lower system cost and improve reliability by improving

connectivity. Open standards, such as IEEE 1394 and CANopen, are

used to connect these components.

NI SoftMotion Controller for Ormec

When you use the NI SoftMotion Controller with an Ormec device, you can

daisy chain up to 15 drives together and connect them to the real-time host.

The real-time isochronous mode of the IEEE 1394 bus is used to transfer

data between the drives and the host. Figure 1-6 shows the NI SoftMotion

Controller component architecture that applies when the controller is used

with an Ormec device.

The supervisory control and trajectory generation loops execute every

millisecond. If the control loop is configured to execute faster than every

millisecond, the trajectory data is interpolated before the control loop

uses it.

Chapter 1 Introduction to NI-Motion

NI-Motion User Manual 1-8 ni.com

Figure 1-6. NI SoftMotion Controller Functional Architecture for Ormec

NI SoftMotion Controller for CANopen

When you use the NI SoftMotion Controller with a CANopen device, you

can daisy chain up to 15 drives together and connect them to the real-time

host. The real-time Process Data Objects (PDOs) defined by the CANopen

protocol are used to transfer data between the drives and host.

All I/O required by the motion controller is implemented by CANopen

drives that support the Device Profile 402 for Motion Control. Currently,

the NI SoftMotion Controller supports only CANopen drives from Copley

Controls Corp. When used with CANopen devices, the Supervisory

Control and Trajectory Generation components of the NI SoftMotion

Controller execute in a real-time environment that is running LabVIEW

Real-Time Module (ETS).

If your motion control system uses 8 axes or fewer, the supervisory control

and trajectory generation loops execute every 10 milliseconds. If your

motion control system uses more than 8 axes, the supervisory control and

trajectory generation loops execute every 20 milliseconds. When you use

the NI SoftMotion Controller with a CANopen drive, the drive implements

the control loop and interpolation.

Trajectory
Generation

Supervisory
Control

I/O**

IEEE 1394 Bus

Ormec DriveNI SoftMotion Controller on Host Device*

*Host device is a PC or PXI chassis running the
 LabVIEW Real-Time Module for RTX Targets

**I/O includes encoder implementation

Control
Loop

Chapter 1 Introduction to NI-Motion

© National Instruments Corporation 1-9 NI-Motion User Manual

Figure 1-7. NI SoftMotion Controller Functional Architecture for CANopen

In this configuration, the I/O and the control loop execute on the CANopen

drive. The NI SoftMotion Controller uses an NI-CAN device to

communicate to the CAN bus.

NI SoftMotion Controller Communication Watchdog

The supervisory control in the NI SoftMotion Controller continuously

monitors all communication with the drives connected to the host. If any

drive fails to update its data in the host loop update period, the axis

corresponding to that drive is disabled and the communication watchdog

status bit, which is returned by the Read Per Axis Status function, is set to

TRUE. Similarly, all drives connected to the NI SoftMotion Controller are

configured to go into a fault state if the data from the

NI SoftMotion Controller is not updated every host loop update period on

the drives.

The communication watchdog functionality ensures that the NI SoftMotion

Controller operates in real time.

Tip To get an axis or axes out of the communication watchdog state, reset the

NI SoftMotion Controller.

Trajectory
Generation

Supervisory
Control

I/O**

CAN Bus

CANopen Drive
NI SoftMotion Controller

on Host Device*

*Host device is a PC or PXI chassis running the
 LabVIEW Real-Time Module

**I/O includes encoder implementation

Control
Loop

Spline
Engine

© National Instruments Corporation 2-1 NI-Motion User Manual

2
Creating NI-Motion Applications

This chapter describes the basic form of an NI-Motion application and its

interaction with other I/O, such as a National Instruments data and/or image

acquisition device.

Creating a Generic NI-Motion Application

Figure 2-1 illustrates the steps for creating an application with NI-Motion,

and describes the generic steps required to design a motion application.

Chapter 2 Creating NI-Motion Applications

NI-Motion User Manual 2-2 ni.com

Figure 2-1. Generic Steps for Designing a Motion Application

Adding Measurements to an NI-Motion Application

Figure 2-2 illustrates an expanded view of the topics covered in Part III,

Programming with NI-Motion, of this manual. For information about items

in the diagram, refer to Chapter 12, Synchronization.

Getting Started with NI-Motion

 for NI 73xx Motion Controllers

Determine the system requirements

Determine the

required mechanical system

Connect the hardware

Configure the controller using

MAX

Test the motion system

Plan the moves

Create the moves

Add measurements with data

and/or image acquisition (optional)

Measurement & Automation

 Explorer Help for Motion

Part III:

Programming with NI-Motion

Chapter 2 Creating NI-Motion Applications

© National Instruments Corporation 2-3 NI-Motion User Manual

Figure 2-2. Input/Output with Data and Image Acquisition

* Breakpoints cause a digital output to change state when a specified position is reached

by an encoder. Breakpoints are not supported by the NI SoftMotion Controller when it is

used with an Ormec or CANopen device.

** A high-speed capture records the position of an encoder when a digital line is used as

a trigger. High-speed captures are not supported by NI SoftMotion Controller for

CANopen. You can use two high-speed captures per axis when you are using the

NI SoftMotion Controller with an Ormec device.

1

Define breakpoint position

Enable a breakpoint

Set data or image acquisition

device to trigger on breakpoint

Re-enable the breakpoint

after each occurrence

(absolute/relative/modulo

breakpoints only)

2a

Define triggering input type

Enable high-speed capture

Read the captured position

Re-enable high-speed capture

after each occurrence

(non-buffered high-speed

capture only)

Chapter 12:

Synchronization

2b

Breakpoints* High-speed capture**

Define control mechanism for I/O

Chapter 2 Creating NI-Motion Applications

NI-Motion User Manual 2-4 ni.com

Note If you are using RTSI to connect your motion controller to a National Instruments

data or image acquisition device, be aware that the NI SoftMotion Controller does not

support RTSI.

© National Instruments Corporation II-1 NI-Motion User Manual

Part II

Configuring Motion Control

Motion control is divided into two parts: configuration and execution.

Part II of this manual discusses configuring the hardware and software

components of a motion control system using NI-Motion.

Part II covers the following topic:

• Tuning Servo Systems

© National Instruments Corporation 3-1 NI-Motion User Manual

3
Tuning Servo Systems

When your motion control system includes a servo motor, you must tune

and calibrate the system to ensure proper performance. This chapter covers

general information about tuning and calibrating your servo system using

control loop parameters. Refer to Measurement & Automation Explorer

Help for Motion for more information about and instructions for tuning

servo motors in Measurement & Automation Explorer (MAX).

NI SoftMotion Controller Considerations

This section includes information you need if you are using the

NI SoftMotion Controller.

NI SoftMotion Controller for CANopen
This chapter does not apply if you are using the

NI SoftMotion Controller for CANopen because the control loop is

implemented on the drive. Refer to the drive documentation for

information about tuning the servo motors you are using with the CANopen

drive.

NI SoftMotion Controller for Ormec
If you are using the NI SoftMotion Controller for Ormec with an Ormec

ServoWire drive in position mode, you must tune the control loop using the

drive configuration utility provided by Ormec.

Using Control Loops to Tune Servo Motors

Tuning maximizes the performance of your servo motors. A servo system

uses feedback to compensate for errors in position and velocity.

For example, when the servo motor reaches the desired position, it cannot

stop instantaneously. There is a normal overshoot that must be corrected.

The controller turns the motor in the opposite direction for the amount of

distance equal to the detected overshoot. However, this corrective move

also exhibits a small overshoot, which must also be corrected in the same

manner as the first overshoot.

Chapter 3 Tuning Servo Systems

NI-Motion User Manual 3-2 ni.com

A properly tuned servo system exhibits overshoot as shown in Figure 3-1.

Figure 3-1. Properly Tuned Servo Motor Behavior

The amount of time required for the motors to settle on the commanded

position is called the settling time. By tuning the servo motors, you can

affect the settling time, the amount of overshoot, and various other

performance characteristics.

Control Loop
NI motion servo control uses control loops to continuously correct errors in

position and velocity. You can configure the control loop to perform a

Proportional, Integral and Derivative (PID) loop or a more advanced

control loop, such as the velocity feedback (PIV) or velocity feedforward

(PIVff) loops.

Commanded
Position

Overshoot

Time
0

Settling Time

Chapter 3 Tuning Servo Systems

© National Instruments Corporation 3-3 NI-Motion User Manual

F
ig

u
re

 3
-2

.
 N

I-
M

o
ti

o
n

 S
er

vo
 P

ID
 L

o
o

p

Chapter 3 Tuning Servo Systems

NI-Motion User Manual 3-4 ni.com

PID Loop Descriptions
The following are common variables relating to the PID control loop.

Kp (Proportional Gain)

The proportional gain (Kp) determines the contribution of restoring force

that is directly proportional to the position error. This restoring force

functions in much the same way as a spring in a mechanical system.

Each sample period, the PID loop calculates the position error, which is the

difference between the instantaneous trajectory position and the primary

feedback position, and multiplies the position error by Kp to produce the

proportional component of the 16-bit DAC command output.

An axis with too small a value of Kp is unable to hold the axis in position

and is very soft. Increasing Kp stiffens the axis and improves its disturbance

torque rejection. However, too large a value of Kp often results in

instability.

Ki (Integral Gain)

The integral gain (Ki) determines the contribution of restoring force that

increases with time, ensuring that the static position error in the servo loop

is forced to zero. This restoring force works against constant torque loads

to help achieve zero position error when the axis is stopped.

Each sample period, the position error is added to the accumulation of

previous position errors to form an integration sum. This integration sum is

scaled by dividing by 256 prior to being multiplied by Ki.

In applications with small static torque loads, this value can be left at its

default value of zero (0). For systems having high static torque loads, this

value should be tuned to minimize position error when the axis is stopped.

Although non-zero values of Ki cause reduced static position error, they

tend to cause increased position error during acceleration and deceleration.

This effect can be mitigated through the use of the Integration Limit

parameter. Too high a value of Ki often results in servo loop instability.

National Instruments therefore recommends that you leave Ki at its default

value of zero until the servo system operation is stable. Then you can add a

small amount of Ki to minimize static position errors.

Chapter 3 Tuning Servo Systems

© National Instruments Corporation 3-5 NI-Motion User Manual

Kd (Derivative Gain)

The derivative gain (Kd) determines the contribution of restoring force

proportional to the rate of change (derivative) of position error. This force

acts much like viscous damping in a damped spring and mass mechanical

system. A shock absorber is an example of this effect.

The PID loop computes the derivative of position error every derivative

sample period. A non-zero value of Kd is required for all systems that use

torque block amplifiers, where the command output is proportional to

motor torque, for the servo loop operation to be stable. Too small a Kd

value results in servo loop instability.

With velocity block amplifiers, where the command output is proportional

to motor velocity, it is typical to set Kd to zero or a very small positive

value.

Kv (Velocity Feedback)

You can use a primary or secondary feedback encoder for velocity

feedback. Setting the velocity feedback gain (Kv) to a value other than

zero (0) enables velocity feedback using the secondary encoder, if

configured, or the primary encoder if a secondary encoder is not

configured.

Kv is used to scale this velocity feedback before it is added to the other

components in the 16-bit DAC command output. Kv is similar to derivative

gain (Kd) except that it scales the velocity estimated from encoder

resources only. The derivative gain scales the derivative of the position

error, which is the difference between the instantaneous trajectory position

and the primary feedback position. Like the Kd term, the velocity feedback

derivative is calculated every derivative sample period and the contribution

is updated every PID sample period.

Velocity feedback is estimated through a combination of speed-dependent

algorithms. Velocity is measured based on the time elapsed between each

encoder count.

Vff (Velocity Feedforward)

The velocity feedforward gain (Vff) determines the contribution in the

16-bit DAC command output that is directly proportional to the

instantaneous trajectory velocity. This value is used to minimize following

error during the constant velocity portion of a move and can be changed at

any time to tune the PID loop.

Chapter 3 Tuning Servo Systems

NI-Motion User Manual 3-6 ni.com

Velocity feedforward is an open-loop compensation technique and cannot

affect the stability of the system. However, if you use too large a value for

Vff, following error can reverse during the constant velocity portion, thus

degrading performance, rather than improving it.

Velocity feedforward is typically used when operating in PIVff mode

with either a velocity block amplifier or substantial amount of velocity

feedback (Kv). In these cases, the uncompensated following error is

directly proportional to the desired velocity. You can reduce this following

error by applying velocity feedforward. Increasing the integral gain (Ki)

also reduces the following error during constant velocity but only at the

expense of increased following error during acceleration and deceleration

and reduced system stability. For these reasons, increasing Ki is not a

recommended solution.

Tip In PIVff mode, the Kd and Kv gains are set to zero.

Velocity feedforward is rarely used when operating in PID mode with

torque block amplifiers. In this case, because the following error is

proportional to the torque required, rather than the velocity, it is typically

much smaller and does not require velocity feedforward.

Aff (Acceleration Feedforward)

The acceleration feedforward gain (Aff) determines the contribution in the

16-bit DAC command output that is directly proportional to the

instantaneous trajectory acceleration. Aff is used to minimize following

error (position error) during acceleration and deceleration and can be

changed at any time to tune the PID loop.

Acceleration feedforward is an open-loop compensation technique and

cannot affect the stability of the system. However, if you use too large a

value of Aff, following error can reverse during acceleration and

deceleration, thus degrading performance, rather than improving it.

Kdac

Kdac is the Digital to Analog Converter (DAC) gain. Use the following

equation to calculate Kdac:

20 V represents the ±10 V range in the motion controller.

Kdac
20 V

2
16

-----------=

Chapter 3 Tuning Servo Systems

© National Instruments Corporation 3-7 NI-Motion User Manual

Ga

Ga is the Amplifier Gain.

Kt

Kt is the Torque Constant of the motor. Kt is represented in Newton Meters

per Amp.

1/J

1/J represents the motor plus load inertia of the motion system.

Ke

Ke represents the conversion factor to revolutions. This may involve a

scaling factor.

Dual Loop Feedback
Motion control systems often use gears to increase output torque, increase

resolution, or convert rotary motion to linear motion. The main

disadvantage of using gears is the backlash created between the motor and

the load. This backlash can cause a loss of position accuracy and system

instability.

The control loop on the motion system corrects for errors and maintains

tight control over the trajectory. The control loop consists of three main

parts—proportional, integral and derivative—known as PID parameters.

The derivative part estimates motor velocity by differentiating the

following error (position error) signal. This velocity signal adds, to the

loop, damping and stability. If backlash is present between the motor and

the position sensor, the positions of the motor and the sensor are no longer

the same. This difference causes the derived velocity to become ineffective

for loop damping purposes, which creates inaccuracy in position and

system instability.

Using two position sensors for an axis can help solve the problems caused

by backlash. As shown in Figure 3-3, one position sensor resides on the

load and the other on the motor before the gears. The motor sensor is used

to generate the required damping and the load sensor for position feedback.

The mix of these two signals provides the correct position feedback with

damping and stability.

Chapter 3 Tuning Servo Systems

NI-Motion User Manual 3-8 ni.com

Figure 3-3. Dual Loop Feedback

Tip You can enable dual-loop feedback on the NI motion controller by mapping an

encoder as the secondary feedback for the axis, and then using the velocity feedback gain

instead of the derivative gain to dampen and stabilize the system, as shown in Figure 3-4.

Figure 3-4. Dual Loop Feedback Algorithm

Σ Σ

Chapter 3 Tuning Servo Systems

© National Instruments Corporation 3-9 NI-Motion User Manual

Velocity Feedback
You can configure the NI motion controller for velocity feedback using the

Kv (velocity feedback) gain. Using Kv creates a minor velocity feedback

loop. This is very similar to the traditional analog servo control method of

using a tachometer for closing the velocity loop. This type of feedback is

necessary for systems where precise speed control is essential.

You can use a less expensive standard torque, or current mode, amplifier

with the velocity feedback loop on NI motion controllers to achieve the

same results you would get from using velocity amplifiers, as shown in

Figure 3-5.

Figure 3-5. Velocity Feedback

Setting any non-zero value for Kv allows you to use the Kv term instead of

or in addition to the Kd term to stabilize the system.

Velocity feedback gain (Kv) is similar to derivative gain (Kd) except that it

scales the velocity estimated from encoder resources only. The derivative

gain scales the derivative of the position error, which is the difference

between the instantaneous trajectory position and the primary feedback

position. Like the Kd term, the velocity feedback derivative is calculated

every derivative sample period, and the contribution is updated every PID

sample period, as shown in Figure 3-6.

Σ Σ

Chapter 3 Tuning Servo Systems

NI-Motion User Manual 3-10 ni.com

Figure 3-6. Alternate Dual-Loop Feedback Algorithm

NI Motion Controllers with Velocity Amplifiers
Velocity amplifiers close the velocity loop using a tachometer on the

amplifier itself, as shown in Figure 3-7. In this case, the controller must

ensure that the voltage output is proportional to the velocity. Use the

velocity feedforward term (Vff) to ensure that there is minimum following

error during the constant velocity profiles.

Figure 3-7. NI Motion Controllers with Velocity Amplifiers

in Addition to Kd

Chapter 3 Tuning Servo Systems

© National Instruments Corporation 3-11 NI-Motion User Manual

Figure 3-8 describes how to use NI motion controllers with velocity

amplifiers.

Figure 3-8. NI Motion Controllers with Velocity Amplifiers Algorithm

You typically use velocity feedforward when using controllers with

velocity amplifiers. The uncompensated following error is directly

proportional to the specified velocity. You can reduce the following error

by applying velocity feedforward. Increasing the integral gain (Ki) also

reduces the following error during constant velocity, but at the expense of

increased following error during acceleration and deceleration and reduced

system stability.

Note National Instruments does not recommend increasing Ki.

Velocity feedforward is rarely used when operating in PID mode with

torque block amplifiers. In this case, following error is typically much

smaller because it is proportional to the torque required rather than to the

velocity. When operating in PID mode with torque block amplifiers,

velocity feedforward is not required.

© National Instruments Corporation III-1 NI-Motion User Manual

Part III

Programming with NI-Motion

You can use the C/C++ functions and LabVIEW VIs, included with

NI-Motion, to configure and execute motion control applications. Part III

of this manual covers the NI-Motion algorithms you need to use all the

features of NI-Motion.

Each task discussion uses the same structure. First, a generic algorithm

flow chart shows how the component pieces relate to each other. Then, the

task discussion details any aspects of creating the task that are specific to

LabVIEW or C/C++ programming, complete with diagrams and code

examples.

Note The LabVIEW block diagrams and C/C++ code examples are designed to illustrate

concepts, and do not contain all the logic or safety features necessary for most functional

applications.

Refer to the NI-Motion Function Help or the NI-Motion VI Help for

detailed information about specific functions or VIs.

Part III covers the following topics:

• What You Need to Know about Moves

• Straight-Line Moves

• Arc Moves

• Contoured Moves

• Reference Moves

• Blending Moves

• Electronic Gearing and Camming

• Acquiring Time-Sampled Position and Velocity Data

Part III Programming with NI-Motion

NI-Motion User Manual III-2 ni.com

• Synchronization

• Torque Control

• Onboard Programs

© National Instruments Corporation 4-1 NI-Motion User Manual

4
What You Need to Know about
Moves

This chapter discusses the concepts necessary for programming motion

control.

Move Profiles

The basic function of a motion controller is to make moves. The trajectory

generator takes in the type of move and the move constraints and generates

points, or instantaneous positions, in real time. Then, the trajectory

generator feeds the points to the control loop.

The control loop converts each instantaneous position to a voltage or to

step-and-direction signals, depending on the type of motor you are using.

Move constraints are the maximum velocity, acceleration, deceleration, and

jerk that the system can handle. The trajectory generator creates a velocity

profile based on these move constraint values.

There are two types of profiles that can be generated while making the

move: trapezoidal and s-curve.

Trapezoidal
When you use a trapezoidal profile, the axes accelerate at the acceleration

value you specify, and then cruise at the maximum velocity you load.

Based on the type of move and the distance being covered, it may be

impossible to reach the maximum velocity you set.

The velocity of the axis, or axes, in a coordinate space never exceeds the

maximum velocity loaded. The axes decelerate to a stop at their final

position, as shown in Figure 4-1.

Chapter 4 What You Need to Know about Moves

NI-Motion User Manual 4-2 ni.com

Figure 4-1. Trapezoidal Move Profile

S-Curve
The acceleration and deceleration portions of an s-curve motion profile are

smooth, resulting in less abrupt transitions, as shown in Figure 4-2. This

limits the jerk in the motion control system, but increases cycle time. The

value by which the profile is smoothed is called the maximum jerk or

s-curve value.

Figure 4-2. S-Curve Move Profile

Basic Moves
There are four basic move types:

• Reference Move—Initializes the axes to a known physical reference

such as a home switch or encoder index

• Straight-Line Move—Moves from point A to point B in a straight

line. The move can be based on position or velocity

• Arc Move—Moves from point A to point B in an arc or helix

Velocity

Time

Velocity

Time

Chapter 4 What You Need to Know about Moves

© National Instruments Corporation 4-3 NI-Motion User Manual

• Contoured Move—Is a user-defined move; you generate the

trajectory, and the points loaded into the motion controller are splined

to create a smooth profile

The motion controller uses the specified move constraints, along with the

move data, such as end position or radius and travel angle, to create a

motion profile in all the moves except the contoured moves. Contoured

moves ignore the move constraints and follow the points you have defined.

Coordinate Space
With the exception of the arc move, you can execute all basic moves on

either a single axis or on a coordinate space. A coordinate space is a logical

grouping of axes, such as the XYZ axis shown in Figure 4-3. Arc moves

always execute on a coordinate space.

If you are performing a move that uses more than one axis, you must

specify a coordinate space made up of the axes the move will use, as shown

in Figure 4-3.

Figure 4-3. 3D Coordinate Space

Use the Configure Vector Space function to configure a coordinate space.

This function creates a logical mapping of axes and treats the axes as part

of a coordinate space.The function then executes the move generated by the

trajectory generator on the vector, and treats all the move constraints as

vector values.

Multi-Starts versus Coordinate Spaces
Coordinate spaces always start and end the motion of all axes

simultaneously. You can use multi-starts to create a similar effect without

Z

Y

X

X, Y, Z

Chapter 4 What You Need to Know about Moves

NI-Motion User Manual 4-4 ni.com

grouping axes into coordinate spaces. Using a multi-start automatically

starts all axes virtually simultaneously. To simultaneously end the moves,

you must calculate the move constraints to end travel at the same time. In

coordinate spaces, this behavior is calculated automatically.

Trajectory Parameters
Use trajectory parameters to control the moves you program in NI-Motion.

All trajectory parameters for servo axes are expressed in terms of

quadrature encoder counts. Parameters for open-loop and closed-loop

stepper axes are expressed in steps. For servo axes, the encoder resolution,

which is expressed in counts per revolution, determines the ultimate

positional resolution of the axis.

For stepper axes, the number of steps per revolution depends upon the type

of stepper drive and motor you are using. For example, a stepper motor with

1.8°/step (200 steps/revolution) used in conjunction with a 10X microstep

drive has an effective resolution of 2,000 steps per revolution. Resolution

on closed-loop stepper axes is limited to the steps per revolution or encoder

counts per revolution, whichever value is more coarse.

Floating-point versus fixed-point parameter representation and time base

are two additional factors that affect the way trajectory parameters are

loaded to the NI motion controller as compared to how they are used by the

trajectory generators.

The NI SoftMotion Controller uses a 64-bit floating point trajectory

generator. The ranges for all move constraints are the full 64-bit range,

which includes maximum velocity, maximum acceleration, maximum

deceleration, maximum acceleration jerk, maximum deceleration jerk, and

velocity override percentage. All arc parameters that use floating point also

support the full 64-bit floating point range.

NI 73xx Floating-Point versus Fixed-Point

Note The information in this section applies only to NI 73xx motion controllers. These

restrictions are not applicable to the NI SoftMotion Controller.

You can load some trajectory parameters as either floating-point or

fixed-point values, but the internal representation on the NI motion

controller is always fixed-point. You must consider this functionality when

working with onboard variables, inputs, and return vectors. This

functionality also has a small effect on parameter range and resolution.

Chapter 4 What You Need to Know about Moves

© National Instruments Corporation 4-5 NI-Motion User Manual

NI 73xx Time Base
Velocity and acceleration values are loaded in counts/s, RPM, RPS/s,

steps/s, and so on, which are all functions of seconds or minutes. However,

the trajectory generator updates target position at the Trajectory Update

Rate, which is programmable with the Enable Axes function. This means

that the range for these parameters depends on the update rate selected, as

shown in the following examples.

Table 4-1 lists minimum and maximum update rates for acceleration and

velocity in various units.

NI 73xx Velocity in RPM

Velocity values in RPM are converted to an internal 16.16 fixed-point

format in units of counts (steps) per sample period (update period) before

being used by the trajectory generator. NI-Motion can control velocity to

1/65,536 of a count or step per sample.

Table 4-1 shows the minimum and maximum velocity in counts/min. Use

the formula shown in the Calculation Based on Units column to determine

the counts/min value to RPM.

Table 4-1. Velocity in Counts/Min

Update Rate MIN MAX

Calculation Based

on Units

62.5 µs 14.648438 counts/min For servo motors, the

maximum counts/min is

1.2 billion independent

of the update rate.

±RPMmax = MAX×1/r

where r = counts/revolution
125 µs 7.324219 counts/min

187.5 µs 4.882813 counts/min

250 µs 3.662109 counts/min

312.5 µs 2.929688 counts/min For stepper motors, the

maximum counts/min

value is dependent on the

controller:

• 480 million

counts/min for 7350

• 240 million

counts/min for 7330,

7340, and 7390

±RPMmin = MIN×1/r

where r = counts/revolution
375 µs 2.441406 counts/min

437.5 µs 2.092634 counts/min

500 µs 1.831055 counts/min

Chapter 4 What You Need to Know about Moves

NI-Motion User Manual 4-6 ni.com

You can calculate this minimum velocity increment in RPM with the

following formula:

where Vmin = 1/65,536 counts/sample or steps/sample

Ts = sample period in seconds per sample

60 = number of seconds in a minute

R = counts or steps per revolution

or

You also can calculate the minimum velocity using the formula shown in

the Calculation Based on Units column in Table 4-1.

For a typical servo axis with 2,000 counts per revolution operating at a

250 µs update rate, the minimum RPM increment is

or

You can calculate the maximum velocity in RPM with the following

equation:

where Vmax = 20 MHz for servos

8 MHz for steppers on a NI 7350 controller

4 MHz for steppers on a NI 7330, NI 7340, or NI 7390

motion controller

R = counts/steps per revolution

minimum RPM Vmin
1

Ts

 × 60×

1

R

 ×=

minimum RPM MIN
1

R
---×=

1

65,536

 1

250 µs

 × 60

1

2000

 ×× 0.00183105 RPM=

3.662109
1

2000
------------× 0.00183105 RPM=

maximum RPM Vmax 60×
1

R
---×=

Chapter 4 What You Need to Know about Moves

© National Instruments Corporation 4-7 NI-Motion User Manual

and is constrained by acceleration/deceleration according to the following

equation:

velocity ≤ (65,536 × deceleration) – acceleration

where velocity is in counts/sample and acceleration and deceleration are in

counts/sample2.

From the example, the maximum RPM is

RPM values stored in onboard variables are in double-precision IEEE

format (f64).

NI 73xx Velocity in Counts/s or Steps/s

Velocity values in counts/s or steps/s are also converted to the internal

16.16 fixed-point format in units of counts or steps per sample (update)

period before being used by the trajectory generator. Although the motion

controller can control velocity to 1/65,536 of a count or step per sample, it

is impossible to load a value that small with the Load Velocity function, as

shown in the following formula:

where Vmin = 1/65,536 counts/sample or steps/sample

Ts = sample period in seconds per sample

Even at the fastest update rate, Ts = 62.5 × 10–6

The Load Velocity function takes an integer input with a minimum value of

1 count/s or step/s. You cannot load fractional values. If you need to load a

velocity slower than one count or step per second, use the Load Velocity

in RPM function.

20 10
6×() 60

1

2,000

 ×× 600,000 RPM=

Velocity in counts or steps/s Vmin
1

Ts

 ×=

1

65,536

 1

62.5 10
6–×

 × 0.244 counts or steps/s=

Chapter 4 What You Need to Know about Moves

NI-Motion User Manual 4-8 ni.com

You can calculate the maximum velocity with the following equation:

where Vmax = 20 MHz for servos

8 MHz for steppers on a NI 7350 controller

4 MHz for steppers on a NI 7330, NI 7340, or NI 7390

motion controller

and is constrained by acceleration/deceleration according to the following

equation:

velocity ≤ (65,536 × deceleration) – acceleration

where velocity is in counts/sample and acceleration and deceleration are in

counts/sample2.

NI 73xx Acceleration in Counts/s2

Acceleration and deceleration values are converted to an internal

16.16 fixed-point format in units of counts/s2 before being used by the

trajectory generator.

Table 4-2 shows the minimum and maximum acceleration update rates in

counts/sec2.

Table 4-2. Acceleration Update Rate in Counts/Sec2

Update Rate MAX MIN

Calculation Based

on Units

62.5 µs 2,048,000,000 counts/sec2 3906 counts/sec2 Accelmax = MAX

125 µs 2,048,000,000 counts/sec2 977 counts/sec2

187.5 µs 910,222,222 counts/sec2 434 counts/sec2

250 µs 512,000,000 counts/sec2 244 counts/sec2

312.5 µs 327,680,000 counts/sec2 156 counts/sec2 Accelmin = MIN

375 µs 227,555,556 counts/sec2 109 counts/sec2

437.5 µs 167,183,673 counts/sec2 80 counts/sec2

500 µs 128,000,000 counts/sec2 61 counts/sec2

maximum velocity Vmax=

Chapter 4 What You Need to Know about Moves

© National Instruments Corporation 4-9 NI-Motion User Manual

You can calculate the minimum acceleration increment with the following

formula:

where Amin = 1/65,536 counts/sample2 or steps/sample2

Ts = sample period in seconds per sample

For a typical servo axis with 2,000 counts per revolution operating at the

250 µs update rate, calculate the minimum acceleration/deceleration

increment using the following equation:

You can calculate the maximum acceleration/deceleration using the

following equation:

where Amax = 32 counts/sample2

Ts = sample period in seconds per sample

and is constrained according to the following equations:

acceleration ≤ 256 × deceleration

deceleration ≤ 65536 × acceleration

NI 73xx Acceleration in RPS/s

Acceleration and deceleration values in RPS/s are converted to an internal

16.16 fixed-point format in units of counts/sample2 or steps/sample2 before

being used by the trajectory generator.

Table 4-3 shows the minimum and maximum acceleration update rates in

counts/sec2.

minimum acceleration/deceleration Amin
1

Ts

2

×=

1

65536

 1

250µs

2

× 244 counts/second

2
=

maximum acceleration/deceleration Amax
1

Ts

2

×=

Chapter 4 What You Need to Know about Moves

NI-Motion User Manual 4-10 ni.com

You can calculate the minimum acceleration increment in RPS/s with the

following formula:

where Amin = 1/65,536 counts/sample2 or steps/sample2

Ts = sample period in seconds per sample

R = counts or steps per revolution

or

For a typical servo axis with 2,000 counts or steps per revolution operating

at the 250 µs update rate, calculate the minimum RPS/s increment using the

following equation:

or

Table 4-3. Acceleration Update Rate in RPS/s

Update Rate MAX MIN

Calculation Based

on Units

62.5 µs 2,048,000,000 counts/sec2 3906 counts/sec2 ±RPS/smax = MAX×1/r

where r = counts/revolution
125 µs 2,048,000,000 counts/sec2 977 counts/sec2

187.5 µs 910,222,222 counts/sec2 434 counts/sec2

250 µs 512,000,000 counts/sec2 244 counts/sec2

312.5 µs 327,680,000 counts/sec2 156 counts/sec2 ±RPS/smin = MIN×1/r

where r = counts/revolution
375 µs 227,555,556 counts/sec2 109 counts/sec2

437.5 µs 167,183,673 counts/sec2 80 counts/sec2

500 µs 128,000,000 counts/sec2 61 counts/sec2

RPS/s Amin
1

Ts

2

×
1

R

 ×=

RPM/s MIN
1

R
---×=

1

65,536

 1

250µs

2 1

2000
------------×× 0.122070 RPS/s=

244
1

2000
------------× 0.122=

Chapter 4 What You Need to Know about Moves

© National Instruments Corporation 4-11 NI-Motion User Manual

You can calculate the maximum RPS/s using the following equation:

where Amax = 32 counts/sample2

Ts = sample period in seconds per sample

R = counts or steps per revolution

and is constrained according to the following equations:

acceleration ≤ 256 × deceleration

deceleration ≤ 65536 × acceleration

or

For a typical servo axis with 2,000 counts or steps per revolution operating

at the 250 µs update rate, calculate the maximum RPS/s increment using the

following equation:

RPS/s values stored in onboard variables are in double-precision

IEEE format (f64).

NI 73xx Velocity Override in Percent

The Load Velocity Override function takes a single-precision

floating-point (f32) data value from 0 to 150%, but velocity override is

internally implemented as a velocity scale factor of 0 to 384 with an

implicit fixed denominator of 256. NI-Motion uses the velocity override to

increase the speed of the calculation for the sake of calculation speed—the

division is a shift right by eight bits. The resolution for velocity override is

therefore limited to 1/256, or about 0.39%.

Note The conversion from floating-point to fixed-point is performed on the host

computer, not on the motion controller. To load velocity override from an onboard variable,

you must use the integer representation of 0 to 384, where 384 corresponds to 150%.

maximum RPS/s Amax
1

Ts

2

×
1

R

 ×=

MAX
1
r
---×

32
1

250µs

2 1

2000
------------×× 256,000 RPS/s=

Chapter 4 What You Need to Know about Moves

NI-Motion User Manual 4-12 ni.com

Note If the distance of the move is too small, it may not be possible to reach the

commanded maximum move constraints. In such instances, NI-Motion adjusts the move

constraints lower to reach the commanded position.

NI 73xx Arc Angles in Degrees

The Load Circular Arc, Load Helical Arc, and Load Spherical Arc

functions take angle parameters in degrees as double-precision

floating-point values. These values are converted to an internal

16.16 fixed-point representation where the integer part corresponds to

multiples of 45° (for example, 360° is represented as 0x0008 0000).

Use the following formula to convert from floating-point to fixed point:

where Q = quotient, the integer multiple of 45°

R = remainder

For example, 94.7° is represented in 16.16 format as follows:

The minimum angular increment is

Note The conversion from floating-point to fixed-point is performed on the host

computer, not on the motion controller. To load arc functions from onboard variables,

you must use the 16.16 fixed-point representation for all angles.

Angle in degrees

45°
-- Q R+=

Angle in 16.16 format Q.
· R

45°
-------- 65,536×

 =

Angle in 16.16 format 2.
4.7°
45°
---------- 65,536×

 0x0002.1ABD= =

1

65.536

 45°× 0.000687°=

Chapter 4 What You Need to Know about Moves

© National Instruments Corporation 4-13 NI-Motion User Manual

NI 73xx Arc Move Limitations
The following are limitations to the velocity and acceleration of arc moves.

Arc moves must use the following equations or an

NIMC_invalidVelocityError is generated:

and

where V = Velocity in counts/s

P = PID sample rate in seconds

I = Arc Interval (10 ms or 20 ms) in seconds

R = Radius in counts

Arc moves must use the following equations or an

NIMC_invalidAccelerationError is generated:

and

where P = PID sample rate in seconds

I = Arc Interval (10 ms or 20 ms) in seconds

R = Radius in counts

A = Acceleration/deceleration in counts/s2

V P× 4 R≥×

1,677,216
V P

2× 83,443×()
R I×

--- 16≥ ≥

A P× 4 R≥×

65,536
A P

3× 83,443×

R I
2×

-------------------------------------- 1≥ ≥

Chapter 4 What You Need to Know about Moves

NI-Motion User Manual 4-14 ni.com

Timing Loops

National Instruments recommends that you use the loop timings discussed

in the following sections.

Status Display
When you are displaying status information to the user, such as position,

move status, or velocity, an update rate faster than 60 ms has no value.

In fact, there is no need to update a display any faster than 22 Hz because

the human eye can detect flicker only at refresh rates slower than 22 Hz.

However, you might see flicker in monitors at around 60 Hz, because of

interference with artificial light from light bulbs that run on a 60 Hz AC

signal. The recommended standard is 60 ms because one might need

multiple function calls within one loop to acquire all the necessary data.

Graphing Data
When acquiring data for graphing or tracking purposes, a 10 ms update

time suits most applications. MAX, for example, updates its motion graphs

every 10 ms. This update time equates to 100 samples every second and

provides enough resolution for typical applications. Consider how accurate

the graph display is when choosing the timing for the loop.

Event Polling
Use a polling interval of 5 ms when polling for a time-critical event that

must occur before the program continues. This interval is fast enough to

satisfy most time-critical polling needs, although certain high-speed

applications may require a faster interval. Consider the allowable response

time when choosing a polling interval.

For example, to synchronize the motion with the acquisition in an

application where a user places an object under the scan area and clicks a

Scan button, you create periodic breakpoints every 10 counts to trigger a

data acquisition over RTSI. In this example, the loop needs only to read the

position and wait for the move to complete before ending the scan.

Although the program polls for an event (move complete), no action is

being triggered by the move complete. Because there is no need for

instantaneous action, there is no need to update the position any faster than

60 ms, and 60 ms is acceptable for monitoring the move complete status

as well.

© National Instruments Corporation 5-1 NI-Motion User Manual

5
Straight-Line Moves

A straight-line move executes the shortest move between two points.

Position-Based Straight-Line Moves

Position-based straight-line moves use the specified target position to

generate the move trajectory. For example, if the motor is currently at

position zero, and the target position is 100, a position-based move creates

a trajectory that moves 100 counts (steps).

The controller requires the following information to move to another

position in a straight line:

• Start position—Current position, normally held over from a previous

move or initialized to zero

• End position—Also known as the target position, or where you want

to move to

• Move constraints—Maximum velocity, maximum acceleration,

maximum deceleration, and maximum jerk

Tip When you are using the NI SoftMotion Controller, you can load separate acceleration

and deceleration jerk values

The motion controller uses the given information to create a trajectory that

never exceeds the move constraints and that moves an axis or axes to the

end position you specify. The controller generates the trajectory in real

time, so you can change any of the parameters while the axes are moving.

Straight-Line Move Algorithm
The straight-line move algorithm includes the following procedures:

• Load target position—Specifies the end position

• Load the move constraints—Loads the velocity, acceleration,

deceleration, and jerk values

• Start motion—Starts the move

Chapter 5 Straight-Line Moves

NI-Motion User Manual 5-2 ni.com

The start position is always the current position of the axis or axes. You can

load the end position as either an absolute position to move to or as a

position relative to the starting position. Although you can update any

parameter while the move is in progress, the new parameter is used only

after a subsequent Start or Blend Move.

Tip You must load the move constraints only if they are different from what was

previously loaded.

Figure 5-1. Position-Based Straight-Line Move Algorithm

Chapter 5 Straight-Line Moves

© National Instruments Corporation 5-3 NI-Motion User Manual

Figure 5-2. 1D Straight-Line Move in LabVIEW

1 Load Velocity
2 Load Acceleration/Deceleration
3 Load Acceleration/Deceleration

4 Load S-Curve Time
5 Set Operation Mode
6 Load Target Position

7 Start Motion
8 Read per Axis Status
9 Motion Error Handler

128

5

2 11

3 4

7

1

9 10

6

Chapter 5 Straight-Line Moves

NI-Motion User Manual 5-4 ni.com

Figure 5-3. 2D Straight-Line Move in LabVIEW

1 Configure Vector Space
2 Load Velocity
3 Load Acceleration/Deceleration
4 Load Acceleration/Deceleration

5 Load S-Curve Time
6 Set Operation Mode
7 Load Target Position
8 Start Motion

9 Check Move Complete Status
10 Read per Axis Status
11 Read per Axis Status
12 Motion Error Handler

128

5

2 11

3 4

7

1

9 10

6

Chapter 5 Straight-Line Moves

© National Instruments Corporation 5-5 NI-Motion User Manual

C/C++ Code
The following example code is not necessarily complete, and may

not compile if copied exactly. Refer to the examples folder on the

NI-Motion CD for files that are complete and compile as is.

1D Straight-Line Move Code
// Main Function

void main(void)

{

u8 boardID;// Board identification number

u8 axis; // Axis number

u16 csr = 0;// Communication status register

u16 axisStatus;// Axis status

u16 moveComplete;

//Variables for modal error handling

u16 commandID;// The commandID of the function

u16 resourceID;// The resource ID

i32 errorCode;// Error code

///////////////////////////////

// Set the board ID

boardID = 1;

// Set the axis number

axis = NIMC_AXIS1;

////////////////////////////////

// Set the velocity for the move (in counts/sec)

err = flex_load_velocity(boardID, axis, 10000,

0xFF);

CheckError;

// Set the acceleration for the move (in

counts/sec^2)

err = flex_load_acceleration(boardID, axis,

NIMC_ACCELERATION, 100000, 0xFF);

CheckError;

// Set the deceleration for the move (in

counts/sec^2)

err = flex_load_acceleration(boardID, axis,

NIMC_DECELERATION, 100000, 0xFF);

CheckError;

// Set the jerk - scurve time (in sample periods)

Chapter 5 Straight-Line Moves

NI-Motion User Manual 5-6 ni.com

err = flex_load_scurve_time(boardID, axis, 1000,

0xFF);

CheckError;

// Set the operation mode

err = flex_set_op_mode (boardID, axis,

NIMC_ABSOLUTE_POSITION);

CheckError;

// Load Position

err = flex_load_target_pos (boardID, axis, 5000,

0xFF);

CheckError;

// Start the move

err = flex_start(boardID, axis, 0);

CheckError;

do

{

axisStatus = 0;

// Check the move complete status

err = flex_check_move_complete_status(boardID,

axis, 0, &moveComplete);

CheckError;

// Check the following error/axis off status for

the axis

err = flex_read_axis_status_rtn(boardID, axis,

&axisStatus);

CheckError;

// Read the communication status register and

check the modal //errors

err = flex_read_csr_rtn(boardID, &csr);

CheckError;

// Check the modal errors

if (csr & NIMC_MODAL_ERROR_MSG)

{

err = csr & NIMC_MODAL_ERROR_MSG;

CheckError;

}

}while (!moveComplete && !(axisStatus &

NIMC_FOLLOWING_ERROR_BIT) && !(axisStatus &

NIMC_AXIS_OFF_BIT));

//Exit on move complete/following error/axis off

return;// Exit the Application

Chapter 5 Straight-Line Moves

© National Instruments Corporation 5-7 NI-Motion User Manual

// Error Handling

nimcHandleError; //NIMCCATCHTHIS:

// Check to see if there were any modal errors

if (csr & NIMC_MODAL_ERROR_MSG){

do{

//Get the command ID, resource ID, and the

error code of the //modal error from the

error stack on the device

flex_read_error_msg_rtn(boardID,&commandI

D, &resourceID,&errorCode);

nimcDisplayError(errorCode,commandID,

resourceID);

//Read the communication status register

flex_read_csr_rtn(boardID,&csr);

}while(csr & NIMC_MODAL_ERROR_MSG);

}

else// Display regular error

nimcDisplayError(err,0,0);

return;// Exit the Application

}

2D Straight-Line Move Code
// Main Function

void main(void)

{

u8 boardID;// Board identification number

u8 vectorSpace;// Vector space number

u16 csr = 0;// Communication status register

u16 axisStatus;// Axis status

u16 status;

u16 moveComplete;

//Variables for modal error handling

u16 commandID;// The commandID of the function

u16 resourceID;// The resource ID

i32 errorCode;// Error code

// Set the board ID

boardID = 1;

// Set the vector space

vectorSpace = NIMC_VECTOR_SPACE1;

Chapter 5 Straight-Line Moves

NI-Motion User Manual 5-8 ni.com

// Configure a 2D vector space comprised of axes 1

and 2

err = flex_config_vect_spc(boardID, vectorSpace, 1,

2, 0);

CheckError;

// Set the velocity for the move (in counts/sec)

err = flex_load_velocity(boardID, vectorSpace,

10000, 0xFF);

CheckError;

// Set the acceleration for the move (in

counts/sec^2)

err = flex_load_acceleration(boardID, vectorSpace,

NIMC_ACCELERATION, 100000, 0xFF);

CheckError;

// Set the deceleration for the move (in

counts/sec^2)

err = flex_load_acceleration(boardID, vectorSpace,

NIMC_DECELERATION, 100000, 0xFF);

CheckError;

// Set the jerk - scurve time (in sample periods)

err = flex_load_scurve_time(boardID, vectorSpace,

1000, 0xFF);

CheckError;

// Set the operation mode

err = flex_set_op_mode (boardID, vectorSpace,

NIMC_ABSOLUTE_POSITION);

CheckError;

// Load vector space position

err = flex_load_vs_pos (boardID, vectorSpace,

5000/*x Position*/, 10000/*y Position*/, 0/* z

Position*/, 0xFF);

CheckError;

// Start the move

err = flex_start(boardID, vectorSpace, 0);

CheckError;

do

{

axisStatus = 0;

// Check the move complete status

err = flex_check_move_complete_status(boardID,

vectorSpace, 0, &moveComplete);

Chapter 5 Straight-Line Moves

© National Instruments Corporation 5-9 NI-Motion User Manual

CheckError;

// Check the following error/axis off status for

axis 1

err = flex_read_axis_status_rtn(boardID, 1,

&status);

CheckError;

axisStatus |= status;

// Check the following error/axis off status for

axis 2

err = flex_read_axis_status_rtn(boardID, 2,

&status);

CheckError;

axisStatus |= status;

// Read the communication status register and

check the modal //errors

err = flex_read_csr_rtn(boardID, &csr);

CheckError;

// Check the modal errors

if (csr & NIMC_MODAL_ERROR_MSG)

{

err = csr & NIMC_MODAL_ERROR_MSG;

CheckError;

}

}while (!moveComplete && !(axisStatus &

NIMC_FOLLOWING_ERROR_BIT) && !(axisStatus &

NIMC_AXIS_OFF_BIT));

//Exit on move complete/following error/axis off

return;// Exit the Application

// Error Handling

nimcHandleError; //NIMCCATCHTHIS:

// Check to see if there were any modal errors

if (csr & NIMC_MODAL_ERROR_MSG){

do{

//Get the command ID, resource ID, and the

error code of the //modal error from the

error stack on the device

flex_read_error_msg_rtn(boardID,&commandI

D,&resourceID, &errorCode);

nimcDisplayError(errorCode,commandID,res

ourceID);

//Read the communication status register

Chapter 5 Straight-Line Moves

NI-Motion User Manual 5-10 ni.com

flex_read_csr_rtn(boardID,&csr);

}while(csr & NIMC_MODAL_ERROR_MSG);

}

else// Display regular error

nimcDisplayError(err,0,0);

return;// Exit the Application

}

Velocity-Based Straight-Line Moves

Some motion applications require moves that travel in a straight line for a

specific amount of time at a given speed. This type of move is known as

velocity profiling or jogging.

You can use a motion control application to move a motor at a given speed

for a specific time, and then change the speed without stopping the axis.

The sign of the loaded velocity specifies the direction of motion. Positive

velocity implies forward motion and negative velocity implies reverse

motion.

Tip You can change the move constraints during a velocity move.

Chapter 5 Straight-Line Moves

© National Instruments Corporation 5-11 NI-Motion User Manual

Algorithm
Figure 5-4 is a generic algorithm applicable to both C/C++ and VI code.

Figure 5-4. Velocity-Based Straight-Line Move Algorithm

Chapter 5 Straight-Line Moves

NI-Motion User Manual 5-12 ni.com

Loading a second velocity and executing Start Motion causes the motion

controller to accelerate or decelerate to the newly loaded velocity using the

acceleration or deceleration parameters last loaded. The axis decelerates to

a stop using the Stop Motion function. The velocity profile created in the

example code is shown in Figure 5-5.

Figure 5-5. Velocity Profile

Velocity

Time

10,000

5,000 10,000

Chapter 5 Straight-Line Moves

© National Instruments Corporation 5-13 NI-Motion User Manual

LabVIEW Code

Figure 5-6. Velocity-Based Straight-Line Move in LabVIEW

C/C++ Code
The following example code is not necessarily complete, and may

not compile if copied exactly. Refer to the examples folder on the

NI-Motion CD for files that are complete and compile as is.

// Main Function

void main(void)

{

u8 boardID;// Board identification number

u8 axis; // Axis number

u16 csr = 0;// Communication status register

u16 axisStatus;// Axis status

i32 moveTime1;// Time for the 1st segment

i32 moveTime2;// Time for the 2nd segment

i32 initialTime;

i32 currentTime;

//Variables for modal error handling

u16 commandID;// The commandID of the function

u16 resourceID;// The resource ID

1 Load Velocity
2 Load Acceleration/Deceleration
3 Load Acceleration/Deceleration
4 Load S-Curve Time

5 Set Operation Mode
6 Start Motion
7 Read per Axis Status
8 Load Velocity

9 Start Motion
10 Read per Axis Status
11 Stop Motion
12 Motion Error Handler

84

1

2

3

96 107

11 12

5

Chapter 5 Straight-Line Moves

NI-Motion User Manual 5-14 ni.com

i32 errorCode;// Error code

// Set the board ID

boardID = 3;

// Set the axis number

axis = NIMC_AXIS1;

// Move time for the first segment

moveTime1 = 5000; //milliseconds

// Move time for the second segment

moveTime2 = 10000; //milliseconds

//---

//First segment

//---

// Set the velocity for the move (in counts/sec)

err = flex_load_velocity(boardID, axis, 10000,

0xFF);

CheckError;

// Set the acceleration for the move (in

counts/sec^2)

err = flex_load_acceleration(boardID, axis,

NIMC_ACCELERATION, 100000, 0xFF);

CheckError;

// Set the deceleration for the move (in

counts/sec^2)

err = flex_load_acceleration(boardID, axis,

NIMC_DECELERATION, 100000, 0xFF);

CheckError;

// Set the jerk (s-curve value) for the move (in

sample periods)

err = flex_load_scurve_time(boardID, axis, 100,

0xFF);

CheckError;

// Set the operation mode to velocity

err = flex_set_op_mode(boardID, axis,

NIMC_VELOCITY);

CheckError;

// Start the move

err = flex_start(boardID, axis, 0);

CheckError;

// Wait for the time for first segment

initialTime = timeGetTime();

Chapter 5 Straight-Line Moves

© National Instruments Corporation 5-15 NI-Motion User Manual

do

{

// Check the following error/axis off status

err = flex_read_axis_status_rtn(boardID, axis,

&axisStatus);

CheckError;

// Read the communication status register and

check the modal //errors

err = flex_read_csr_rtn(boardID, &csr);

CheckError;

// Check the modal errors

if (csr & NIMC_MODAL_ERROR_MSG)

{

err = csr & NIMC_MODAL_ERROR_MSG;

CheckError;

}

// Get the current time and check if time is over

for the first //segment

currentTime = timeGetTime();

if((currentTime - initialTime) >= moveTime1)

break;

Sleep (100); //Check every 100 ms

}while (!(axisStatus) && !(axisStatus &

NIMC_FOLLOWING_ERROR_BIT) && !(axisStatus &

NIMC_AXIS_OFF_BIT)); //Exit on following error/axis

off

//---

// Second segment

//---

// Set the velocity for the move (in counts/sec)

err = flex_load_velocity(boardID, axis, 6568, 0xFF);

CheckError;

// Start the move - to update the velocity

err = flex_start(boardID, axis, 0);

CheckError;

// Wait for the time for second segment

initialTime = timeGetTime();

do

{

// Check the following error/axis off status

err = flex_read_axis_status_rtn(boardID, axis,

&axisStatus);

Chapter 5 Straight-Line Moves

NI-Motion User Manual 5-16 ni.com

CheckError;

// Read the communication status register and

check the modal // errors

err = flex_read_csr_rtn(boardID, &csr);

CheckError;

// Check the modal errors

if (csr & NIMC_MODAL_ERROR_MSG)

{

err = csr & NIMC_MODAL_ERROR_MSG;

CheckError;

}

// Get the current time and check if time is over

for the //second segment

currentTime = timeGetTime();

if((currentTime - initialTime) >= moveTime2)

break;

Sleep (100); //Check every 100 ms

}while (!(axisStatus) && !(axisStatus &

NIMC_FOLLOWING_ERROR_BIT) && !(axisStatus &

NIMC_AXIS_OFF_BIT)); //Exit on move

complete/following error/axis off

// Decelerate the axis to a stop

err = flex_stop_motion(boardID, axis,

NIMC_DECEL_STOP, 0);

CheckError;

return;// Exit the Application

// Error Handling

nimcHandleError; //NIMCCATCHTHIS:

// Check to see if there were any modal errors

if (csr & NIMC_MODAL_ERROR_MSG){

do{

//Get the command ID, resource ID, and the

error code of the //modal error from the

error stack on the device

flex_read_error_msg_rtn(boardID,&commandI

D,&resourceID, &errorCode);

nimcDisplayError(errorCode,commandID,res

ourceID);

//Read the communication status register

Chapter 5 Straight-Line Moves

© National Instruments Corporation 5-17 NI-Motion User Manual

flex_read_csr_rtn(boardID,&csr);

}while(csr & NIMC_MODAL_ERROR_MSG);

}

else// Display regular error

nimcDisplayError(err,0,0);

return;// Exit the Application

}

Velocity Profiling Using Velocity Override

You also can use Load Velocity Override to shift from one velocity to

another while executing moves. When you use this function, you indicate

the new velocity in terms of a percentage of the originally loaded velocity

instead of explicitly stating the velocity you want to change to.

For example, 120 percent of an original velocity of 10,000 changes the

velocity to 12,000.

The transition between velocities follows all other move constraints.

Chapter 5 Straight-Line Moves

NI-Motion User Manual 5-18 ni.com

Algorithm
Figure 5-7 is a generic algorithm applicable to both C/C++ and VI code.

Figure 5-7. Velocity Override Algorithm

Waits the duration of time you specified
for the originally loaded velocity

Waits the duration of time you specified
for the newly loaded velocity

Chapter 5 Straight-Line Moves

© National Instruments Corporation 5-19 NI-Motion User Manual

LabVIEW Code

Figure 5-8. Velocity-Based Move Using Velocity Override in LabVIEW

1 Load Velocity
2 Load Acceleration/Deceleration
3 Load Acceleration/Deceleration
4 Load S-Curve Time

5 Set Operation Mode
6 Start Motion
7 Read per Axis Status
8 Load Velocity Override

9 Read per Axis Status
10 Stop Motion
11 Motion Error Handler

4

1

2

3

6 97

10 11

5

8

Chapter 5 Straight-Line Moves

NI-Motion User Manual 5-20 ni.com

C/C++ Code
The following example code is not necessarily complete, and may

not compile if copied exactly. Refer to the examples folder on the

NI-Motion CD for files that are complete and compile as is.

// Main Function

void main(void)

{

u8 boardID;// Board identification number

u8 axis;// Axis number

u16 csr = 0;// Communication status register

u16 axisStatus;// Axis status

i32 moveTime1;// Time for the 1st segment

i32 moveTime2;// Time for the 2nd segment

i32 initialTime;

i32 currentTime;

//Variables for modal error handling

u16 commandID;// The commandID of the function

u16 resourceID;// The resource ID

i32 errorCode;// Error code

///////////////////////////////

// Set the board ID

boardID = 3;

// Set the axis number

axis = NIMC_AXIS1;

// Move time for the first segment

moveTime1 = 5000; //milliseconds

// Move time for the second segment

moveTime2 = 10000; //milliseconds

////////////////////////////////

//---

//First segment

//---

// Set the velocity for the move (in counts/sec)

err = flex_load_velocity(boardID, axis, 10000,

0xFF);

CheckError;

// Set the acceleration for the move (in

counts/sec^2)

err = flex_load_acceleration(boardID, axis,

NIMC_ACCELERATION, 100000, 0xFF);

CheckError;

Chapter 5 Straight-Line Moves

© National Instruments Corporation 5-21 NI-Motion User Manual

// Set the deceleration for the move (in

counts/sec^2)

err = flex_load_acceleration(boardID, axis,

NIMC_DECELERATION, 100000, 0xFF);

CheckError;

// Set the jerk (s-curve value) for the move (in

sample periods)

err = flex_load_scurve_time(boardID, axis, 100,

0xFF);

CheckError;

// Set the operation mode to velocity

err = flex_set_op_mode(boardID, axis,

NIMC_VELOCITY);

CheckError;

// Start the move

err = flex_start(boardID, axis, 0);

CheckError;

// Wait for the time for first segment

initialTime = timeGetTime();

do

{

// Check the following error/axis off status

err = flex_read_axis_status_rtn(boardID, axis,

&axisStatus);

CheckError;

// Read the communication status register and

check the modal //errors

err = flex_read_csr_rtn(boardID, &csr);

CheckError;

// Check the modal errors

if (csr & NIMC_MODAL_ERROR_MSG)

{

err = csr & NIMC_MODAL_ERROR_MSG;

CheckError;

}

// Get the current time and check if time is over

for the first //segment

currentTime = timeGetTime();

if((currentTime - initialTime) >= moveTime1)

break;

Sleep (100); //Check every 100 ms

Chapter 5 Straight-Line Moves

NI-Motion User Manual 5-22 ni.com

}while (!(axisStatus) && !(axisStatus &

NIMC_FOLLOWING_ERROR_BIT) && !(axisStatus &

NIMC_AXIS_OFF_BIT)); //Exit on move

//complete/following error/axis off

//---

// Second segment

//---

//Change the velocity to 80% of the initially loaded

value

err = flex_load_velocity_override(boardID, axis, 80,

0xFF);

CheckError;

// Wait for the time for second segment

initialTime = timeGetTime();

do

{

// Check the following error/axis off status

err = flex_read_axis_status_rtn(boardID, axis,

&axisStatus);

CheckError;

// Read the communication status register and

check the modal //errors

err = flex_read_csr_rtn(boardID, &csr);

CheckError;

// Check the modal errors

if (csr & NIMC_MODAL_ERROR_MSG)

{

err = csr & NIMC_MODAL_ERROR_MSG;

CheckError;

}

// Get the current time and check if time is over

for the second //segment

currentTime = timeGetTime();

if((currentTime - initialTime) >= moveTime2)

break;

Sleep (100); //Check every 100 ms

}while (!(axisStatus) && !(axisStatus &

NIMC_FOLLOWING_ERROR_BIT) && !(axisStatus &

NIMC_AXIS_OFF_BIT)); //Exit on move

complete/following error/axis off

// Decelerate the axis to a stop

Chapter 5 Straight-Line Moves

© National Instruments Corporation 5-23 NI-Motion User Manual

err = flex_stop_motion(boardID, axis,

NIMC_DECEL_STOP, 0);

CheckError;

// Reset velocity override back to 100%

err = flex_load_velocity_override(boardID, axis,

100, 0xFF);

CheckError;

return;// Exit the Application

///

// Error Handling

//

nimcHandleError; //NIMCCATCHTHIS:

// Check to see if there were any modal errors

if (csr & NIMC_MODAL_ERROR_MSG){

do{

//Get the command ID, resource ID, and the

error code of the //modal error from the

error stack on the device

flex_read_error_msg_rtn(boardID,&commandI

D,&resourceID, &errorCode);

nimcDisplayError(errorCode,commandID,res

ourceID);

//Read the communication status register

flex_read_csr_rtn(boardID,&csr);

}while(csr & NIMC_MODAL_ERROR_MSG);

}

else// Display regular error

nimcDisplayError(err,0,0);

return;// Exit the Application

}

© National Instruments Corporation 6-1 NI-Motion User Manual

6
Arc Moves

An arc move causes a coordinate space of axes to move on a circular,

spherical, or helical path. You can move two-dimensional vector spaces in

a circle only on a 2D plane. You can move a 3D vector space on a spherical

or helical path.

Each arc generated by the motion controller passes through a cubic spline

algorithm that ensures the smoothest arc. This also ensures negligible

chordal error, which is error caused when two points on the surface of the

arc join with each other using a straight line. A cubic spline algorithm

generates multiple points between every two points of the arc, ensuring

smooth motion, minimum jerk, and maximum accuracy at all times. The

data path is shown in Figure 6-1.

Figure 6-1. Arc Move Data Path

Circular Arcs

A circular arc defines an arc in the XY plane of a 2D or 3D coordinate

space. The arc is specified by a radius, starting angle, and travel angle.

Also, like all coordinate space moves, the arc uses the values of move

constraints—maximum velocity, maximum acceleration, and maximum

deceleration.

Tip For the NI SoftMotion Controller, the arc generation also uses acceleration jerk and

deceleration jerk while calculating the arc move.

Note When you use an NI 73xx motion controller to move a motor in an arc, you can use

only trapezoidal profiles. You do not use jerk to calculate the profile for arc moves.

Cubic SpineArc Generation
Output to DACs or

Stepper Output

Chapter 6 Arc Moves

NI-Motion User Manual 6-2 ni.com

To move axes in a circular arc, the motion controller needs the following

information:

• Radius—Specifies the distance from the center of the arc to its edge

• Start Angle—Orients the arc on its plane using the starting point as an

axis to spin around. Because the starting point for a new arc is fixed

based on the current position, moving its center around the starting

point alters the orientation of a new arc. For example, Figure 6-2 shows

the effect of changing the start angle from 0° to 180°.

Figure 6-2. Rotating Start Angle

• Travel Angle—Indicates how far the arc travels in a 360° circle. For

example, a travel angle of 90° executes a quarter-circle, a travel angle

of 360° creates a full circle, and a travel angle of 720° creates two full

circles. A positive travel angle always creates counterclockwise

circular motion. A negative travel angle reverses the direction to create

clockwise circular motion, as shown in Figure 6-3.

1 Original Arc 2 Arc with 180° Start Angle

0° 180°

1

2

Chapter 6 Arc Moves

© National Instruments Corporation 6-3 NI-Motion User Manual

Figure 6-3. Positive and Negative Travel Angles

Arc Move Algorithm

Figure 6-4. Circular Arc Move Algorithm

1 Positive Travel Angle 2 Negative Travel Angle

1 2

Load Velocity

Start Motion

Load Acceleration/
Deceleration

Perform Measurements
(Optional)

Load Circular Arc

Radius, Start Angle,

and Travel Angle

Move
Constraints

Loop Waiting for Move Complete

Chapter 6 Arc Moves

NI-Motion User Manual 6-4 ni.com

LabVIEW Code

Figure 6-5. Circular Arc Move in LabVIEW

C/C++ Code
The following example code is not necessarily complete, and may

not compile if copied exactly. Refer to the examples folder on the

NI-Motion CD for files that are complete and compile as is.

// Main Function

void main(void)

{

u8 boardID;// Board identification number

u8 vectorSpace;// Vector space number

u16 csr = 0;// Communication status register

u16 axisStatus;// Axis status

u16 status;

u16 moveComplete;

//Variables for modal error handling

1 Configure Vector Space
2 Load Velocity
3 Load Acceleration/Deceleration
4 Load Acceleration/Deceleration

5 Load Circular Arc
6 Start Motion
7 Check Move Complete Status

8 Read per Axis Status
9 Read per Axis Status
10 Motion Error Handler

10

5 6

321 98

4

7

Chapter 6 Arc Moves

© National Instruments Corporation 6-5 NI-Motion User Manual

u16 commandID;// The commandID of the function

u16 resourceID;// The resource ID

i32 errorCode;// Error code

///////////////////////////////

// Set the board ID

boardID = 1;

// Set the vector space number

vectorSpace = NIMC_VECTOR_SPACE1;

////////////////////////////////

// Configure a 2D vector space comprising of axes 1

and 2

err = flex_config_vect_spc(boardID, vectorSpace,

NIMC_AXIS1, NIMC_AXIS2, 0);

CheckError;

// Set the velocity for the move (in counts/sec)

err = flex_load_velocity(boardID, vectorSpace,

10000, 0xFF);

CheckError;

// Set the acceleration for the move (in

counts/sec^2)

err = flex_load_acceleration(boardID, vectorSpace,

NIMC_ACCELERATION, 100000, 0xFF);

CheckError;

// Set the deceleration for the move (in

counts/sec^2)

err = flex_load_acceleration(boardID, vectorSpace,

NIMC_DECELERATION, 100000, 0xFF);

CheckError;

// Load Spherical Arc

err = flex_load_circular_arc (boardID, vectorSpace,

5000/*radius*/, 0.0/*startAngle*/,

180.0/*travelAngle*/, 0xFF);

CheckError;

//Start the move

err = flex_start(boardID, vectorSpace, 0);

CheckError;

do

{

axisStatus = 0;

//Check the move complete status

Chapter 6 Arc Moves

NI-Motion User Manual 6-6 ni.com

err = flex_check_move_complete_status(boardID,

vectorSpace, 0, &moveComplete);

CheckError;

// Check the following error/axis off status for

axis 1

err = flex_read_axis_status_rtn(boardID,

NIMC_AXIS1, &status);

CheckError;

axisStatus |= status;

// Check the following error/axis off status for

axis 2

err = flex_read_axis_status_rtn(boardID,

NIMC_AXIS2, &status);

CheckError;

axisStatus |= status;

// Read the communication status register and

check the modal // errors

err = flex_read_csr_rtn(boardID, &csr);

CheckError;

//Check the modal errors

if (csr & NIMC_MODAL_ERROR_MSG)

{

err = csr & NIMC_MODAL_ERROR_MSG;

CheckError;

}

}while (!moveComplete && !(axisStatus &

NIMC_FOLLOWING_ERROR_BIT) && !(axisStatus &

NIMC_AXIS_OFF_BIT));

//Exit on move complete/following error/axis off

return;// Exit the Application

//////////////////////

// Error Handling

//

nimcHandleError; //NIMCCATCHTHIS:

// Check to see if there were any Modal Errors

if (csr & NIMC_MODAL_ERROR_MSG){

do{

//Get the command ID, resource ID and the

error code of the //modal error from the

error stack on the device

Chapter 6 Arc Moves

© National Instruments Corporation 6-7 NI-Motion User Manual

flex_read_error_msg_rtn(boardID,&commandI

D,&resourceID, &errorCode);

nimcDisplayError(errorCode,commandID,res

ourceID);

//Read the communication status register

flex_read_csr_rtn(boardID,&csr);

}while(csr & NIMC_MODAL_ERROR_MSG);

}

else// Display regular error

nimcDisplayError(err,0,0);

return;// Exit the Application

}

Spherical Arcs

A 3D spherical arc defines a 2D circular arc in the X'Y' plane of a

coordinate system that is transformed by rotation in pitch and yaw from the

normal 3D coordinate space (XYZ), as shown in Figures 6-6 and 6-7.

Figure 6-6. Changing Pitch by Rotating the X Axis

Z

X

Y

Chapter 6 Arc Moves

NI-Motion User Manual 6-8 ni.com

Figure 6-7. Changing Yaw by Rotating the Z Axis

In the transformed X'Y'Z' space, the 3D arc is reduced to a simpler 2D arc.

The 3D arc is defined as a 2D circular arc in the X'Y' plane of a transformed

vector space X'Y'Z'. This transformed vector space, X'Y'Z', is defined in

orientation only, with no absolute position offset. Its orientation is relative

to the XYZ vector space, and is defined in terms of pitch and yaw angles.

When rotating through the pitch angle, the Y and Y' axes stay aligned with

each other while the X'Z' plane rotates around them. When rotating through

the yaw angle, the Y' axis never leaves the original XY plane, as the

newly-defined X'Y'Z' vector space rotates around the original Z-axis.

The radius, start angle, and travel angle parameters also apply to a spherical

arc that defines the arc in two dimensions.

Z

X

Y

Chapter 6 Arc Moves

© National Instruments Corporation 6-9 NI-Motion User Manual

Algorithm

Figure 6-8. Spherical Arc Algorithm

Load Velocity

Start Motion

Load Acceleration/
Deceleration

Perform Measurements
(Optional)

Load Spherical Arc

Radius, Start Angle,
Travel Angle, Yaw, and Pitch

Move
Constraints

Loop Waiting for Move Complete

Chapter 6 Arc Moves

NI-Motion User Manual 6-10 ni.com

LabVIEW Code

Figure 6-9. Spherical Arc Move in LabVIEW

C/C++ Code
The following example code is not necessarily complete, and may

not compile if copied exactly. Refer to the examples folder on the

NI-Motion CD for files that are complete and compile as is.

// Main Function

void main(void)

{

u8 boardID;// Board identification number

u8 vectorSpace;// Vector space number

u16 csr = 0;// Communication status register

u16 axisStatus;// Axis status

u16 status;

u16 moveComplete;

//Variables for modal error handling

u16 commandID;// The commandID of the function

u16 resourceID;// The resource ID

i32 errorCode;// Error code

1 Configure Vector Space
2 Load Velocity
3 Load Acceleration/Deceleration
4 Load Acceleration/Deceleration

5 Load Spherical Arc
6 Start Motion
7 Check Move Complete Status
8 Read per Axis Status

9 Read per Axis Status
10 Read per Axis Status
11 Motion Error Handler

11

6

3

4

1 1087

2

5

9

Chapter 6 Arc Moves

© National Instruments Corporation 6-11 NI-Motion User Manual

///////////////////////////////

// Set the board ID

boardID = 1;

// Set the vector space number

vectorSpace = NIMC_VECTOR_SPACE1;

////////////////////////////////

// Configure a 3D vector space comprising of axes 1,

2 and 3

err = flex_config_vect_spc(boardID, vectorSpace,

NIMC_AXIS1, NIMC_AXIS2, NIMC_AXIS3);

CheckError;

// Set the velocity for the move (in counts/sec)

err = flex_load_velocity(boardID, vectorSpace,

10000, 0xFF);

CheckError;

// Set the acceleration for the move (in

counts/sec^2)

err = flex_load_acceleration(boardID, vectorSpace,

NIMC_ACCELERATION, 100000, 0xFF);

CheckError;

// Set the deceleration for the move (in

counts/sec^2)

err = flex_load_acceleration(boardID, vectorSpace,

NIMC_DECELERATION, 100000, 0xFF);

CheckError;

// Load Spherical Arc

err = flex_load_spherical_arc (boardID, vectorSpace,

5000/*radius*/, 45.0/*planePitch*/,

45.0/*planeYaw*/, 0.0/*startAngle*/,

180.0/*travelAngle*/, 0xFF);

CheckError;

//Start the move

err = flex_start(boardID, vectorSpace, 0);

CheckError;

do

{

axisStatus = 0;

//Check the move complete status

err = flex_check_move_complete_status(boardID,

vectorSpace, 0, &moveComplete);

CheckError;

Chapter 6 Arc Moves

NI-Motion User Manual 6-12 ni.com

// Check the following error/axis off status for

axis 1

err = flex_read_axis_status_rtn(boardID,

NIMC_AXIS1, &status);

CheckError;

axisStatus |= status;

// Check the following error/axis off status for

axis 2

err = flex_read_axis_status_rtn(boardID,

NIMC_AXIS2, &status);

CheckError;

axisStatus |= status;

// Check the following error/axis off status for

axis 3

err = flex_read_axis_status_rtn(boardID,

NIMC_AXIS3, &status);

CheckError;

axisStatus |= status;

//Read the communication status register and

check the modal //errors

err = flex_read_csr_rtn(boardID, &csr);

CheckError;

//Check the modal errors

if (csr & NIMC_MODAL_ERROR_MSG)

{

err = csr & NIMC_MODAL_ERROR_MSG;

CheckError;

}

}while (!moveComplete && !(axisStatus &

NIMC_FOLLOWING_ERROR_BIT) && !(axisStatus &

NIMC_AXIS_OFF_BIT));

//Exit on move complete/following error/axis off

return;// Exit the Application

//////////////////////

// Error Handling

nimcHandleError; //NIMCCATCHTHIS:

// Check to see if there were any Modal Errors

if (csr & NIMC_MODAL_ERROR_MSG){

do{

Chapter 6 Arc Moves

© National Instruments Corporation 6-13 NI-Motion User Manual

//Get the command ID, resource ID, and the

error code of the //modal error from the

error stack on the device

flex_read_error_msg_rtn(boardID,&commandI

D,&resourceID, &errorCode);

nimcDisplayError(errorCode,commandID,res

ourceID);

//Read the communication status register

flex_read_csr_rtn(boardID,&csr);

}while(csr & NIMC_MODAL_ERROR_MSG);

}

else// Display regular error

nimcDisplayError(err,0,0);

return;// Exit the Application

}

Helical Arcs

A helical arc defines an arc in a 3D coordinate space that consists of a circle

in the XY plane and synchronized linear travel in the Z-axis. The arc is

specified by a radius, start angle, travel angle, and Z-axis linear travel.

Linear travel is the linear distance traversed by the helical arc on the Z-axis,

as shown in Figure 6-10.

Figure 6-10. Helical Arc

1 Side View of Helix 2 Top View of Helix 3 Isometric View of Helix 4 Linear Travel

X

Y

ZX

Y

X

Z

1 2 3

4

Chapter 6 Arc Moves

NI-Motion User Manual 6-14 ni.com

Algorithm

Figure 6-11. Helical Arc Algorithm

Load Velocity

Start Motion

Load Acceleration/
Deceleration

Perform Measurements
(Optional)

Load Helical Arc

Radius, Start Angle,
Travel Angle, Linear Travel

Move
Constraints

Loop Waiting for Move Complete

Chapter 6 Arc Moves

© National Instruments Corporation 6-15 NI-Motion User Manual

LabVIEW Code

Figure 6-12. Helical Arc Move in LabVIEW

C/C++ Code
The following example code is not necessarily complete, and may

not compile if copied exactly. Refer to the examples folder on the

NI-Motion CD for files that are complete and compile as is.

// Main Function

void main(void){

u8 boardID;// Board identification number

u8 vectorSpace;// Vector space number

u16 csr = 0;// Communication status register

u16 axisStatus;// Axis status

u16 status;

u16 moveComplete;

//Variables for modal error handling

u16 commandID;// The commandID of the function

u16 resourceID;// The resource ID

i32 errorCode;// Error code

///////////////////////////////

1 Configure Vector Space
2 Load Velocity
3 Load Acceleration/Deceleration
4 Load Acceleration/Deceleration

5 Load Helical Arc
6 Start Motion
7 Check Move Complete Status
8 Read per Axis Status

9 Read per Axis Status
10 Read per Axis Status
11 Motion Error Handler

11

6

3 41 10872

5

9

Chapter 6 Arc Moves

NI-Motion User Manual 6-16 ni.com

// Set the board ID

boardID = 1;

// Set the vector space number

vectorSpace = NIMC_VECTOR_SPACE1;

////////////////////////////////

// Configure a 3D vector space comprising of axes 1,

2 and 3

err = flex_config_vect_spc(boardID, vectorSpace,

NIMC_AXIS1, NIMC_AXIS2, NIMC_AXIS3);

CheckError;

// Set the velocity for the move (in counts/sec)

err = flex_load_velocity(boardID, vectorSpace,

10000, 0xFF);

CheckError;

// Set the acceleration for the move (in

counts/sec^2)

err = flex_load_acceleration(boardID, vectorSpace,

NIMC_ACCELERATION, 100000, 0xFF);

CheckError;

// Set the deceleration for the move (in

counts/sec^2)

err = flex_load_acceleration(boardID, vectorSpace,

NIMC_DECELERATION, 100000, 0xFF);

CheckError;

// Load Helical Arc

err = flex_load_helical_arc (boardID, vectorSpace,

5000/*radius*/, 0.0/*startAngle*/,

720.0/*travelAngle*/, 5000 /*linear travel*/, 0xFF);

CheckError;

//Start the move

err = flex_start(boardID, vectorSpace, 0);

CheckError;

do

{

axisStatus = 0;

//Check the move complete status

err = flex_check_move_complete_status(boardID,

vectorSpace, 0, &moveComplete);

CheckError;

// Check the following error/axis off status for

axis 1

Chapter 6 Arc Moves

© National Instruments Corporation 6-17 NI-Motion User Manual

err = flex_read_axis_status_rtn(boardID,

NIMC_AXIS1, &status);

CheckError;

axisStatus |= status;

// Check the following error/axis off status for

axis 2

err = flex_read_axis_status_rtn(boardID,

NIMC_AXIS2, &status);

CheckError;

axisStatus |= status;

// Check the following error/axis off status for

axis 3

err = flex_read_axis_status_rtn(boardID,

NIMC_AXIS3, &status);

CheckError;

axisStatus |= status;

//Read the communication status register and

check the modal //errors

err = flex_read_csr_rtn(boardID, &csr);

CheckError;

//Check the modal errors

if (csr & NIMC_MODAL_ERROR_MSG)

{

err = csr & NIMC_MODAL_ERROR_MSG;

CheckError;

}

}while (!moveComplete && !(axisStatus &

NIMC_FOLLOWING_ERROR_BIT) && !(axisStatus &

NIMC_AXIS_OFF_BIT));

//Exit on move complete/following error/axis off

return;// Exit the Application

//////////////////////

// Error Handling

//

nimcHandleError; //NIMCCATCHTHIS:

// Check to see if there were any Modal Errors

if (csr & NIMC_MODAL_ERROR_MSG){

do{

//Get the command ID, resource ID, and the

error code of the //modal error from the

error stack on the device

Chapter 6 Arc Moves

NI-Motion User Manual 6-18 ni.com

flex_read_error_msg_rtn(boardID,&commandI

D,&resourceID, &errorCode);

nimcDisplayError(errorCode,commandID,res

ourceID);

//Read the communication status register

flex_read_csr_rtn(boardID,&csr);

}while(csr & NIMC_MODAL_ERROR_MSG);

}

else// Display regular error

nimcDisplayError(err,0,0);

return;// Exit the Application

}

© National Instruments Corporation 7-1 NI-Motion User Manual

7
Contoured Moves

A contoured move moves an axis or a coordinate space of axes in a pattern

that you define. The trajectory generator on the motion controller is not

used during a contoured move. The controller takes position data in the

form of an array, and splines the data before outputting it to the DACs or

stepper outputs, as shown in Figure 7-1.

Figure 7-1. Contoured Move Data Path

Overview

All positions in a contouring buffer are relative to the current position when

starting. There is an assumed 0 point that the firmware adds to the front of

the buffer of points. For example, if the contour buffer is [10, 20, 30, 40],

the positions are [0, 10, 20, 30, 40] in the firmware.

When a contour move starts it takes a snap shot of the current position

according to the following equation:

StartPosition = currentPosition.

The start position is added to each point in the buffer to get the actual

position to move through according to the following equation:

Point = StartPosition + bufferPosition[n].

If the current position is 100, and the buffer is [10, 20, 30, 40], the contour

move follows these points: [100, 110, 120, 130, 140].

Cubic Spine
User-Defined

Points
Output to DACs or

Stepper Output

Chapter 7 Contoured Moves

NI-Motion User Manual 7-2 ni.com

The difference between absolute contouring and relative contouring is how

the points in the buffer are treated. The previous example was of an absolute

contour move. A relative contour move treats the points as deltas according

to the following formula:

Point[n] = Point[n-1] + bufferPosition[n]

For a relative contour move that starts at position 100 and includes a buffer

with the following values: [10, 20, 30, 40], the points the contour move

follows are [100, 110, 130, 160, 200].

For contoured moves, no two consecutive points can differ by more than

215 – 1. For absolute position mode, the first position in the array passed to

the controller must be less than 215 – 1, and any two consecutive points

must be less than 215 – 1. For relative position mode, no point passed to the

controller can be greater than 215 – 1.

Arbitrary Contoured Moves

Contoured moves are useful when you want to generate a trajectory that

cannot be constructed from straight lines and arcs. To ensure that the

motion is smooth with minimum jerk, the motion controller creates

intermediate points using a cubic spline algorithm.

The move constraints commonly used to limit other types of moves, such

as maximum velocity, maximum acceleration, maximum deceleration,

and maximum jerk, have no effect on contoured moves. However, the

NI Motion Assistant prototyping tool can remap a user-defined trajectory

based on specified move constraints, preserving move characteristics and

move geometry.

Chapter 7 Contoured Moves

© National Instruments Corporation 7-3 NI-Motion User Manual

Contoured Move Algorithm

Figure 7-2. Contoured Move Algorithm

Clear the buffer that stores
contoured move points

Start Motion

Configure the buffer
on the device

Perform Measurements
(Optional)

Set Operation Mode

Specify absolute or

relative contouring

Check the buffer on the device

Number of points consumed

Write Buffer

Write remaining points

to onboard buffer

Write Buffer

Write the array of points and the

number of points you are writing

Restore Operation Mode

Set operation mode back to absolute

position to clear contouring data

• Set the Buffer Type as Position
• Total Points is the total number of
 countoured points you want to load
• Buffer Size is the size of the buffer you
 want to create on the device
• Set Old Data Stop to TRUE if you do
 not want old data to be used
• Requested Interval is the time interval
 between points

Loop Waiting for Move Complete

Update Contoured Data (Optional)

Chapter 7 Contoured Moves

NI-Motion User Manual 7-4 ni.com

All contoured moves are relative, meaning motion starts from the position

of the axis or axes at the time the contouring move starts. This behavior is

similar to the way arc moves work. Depending on the operation mode you

use, you can load absolute positions in the array or relative positions, which

imply incremental position differences between contouring points.

Absolute versus Relative Contouring
If an axis starts at position 0 and uses either of the following sets of

contouring points, the axis ends up at position 28. If the axis starts at

position 10, it ends up at position 38 in both cases.

Figure 7-3. Absolute Contouring Buffer Values

Figure 7-4. Relative Contouring Buffer Values

1 3 6 10 14 18 22 25 27 28

1 2 3 4 4 4 4 3 2 1

C
h
ap

ter 7
C

o
n

to
u

red
 M

o
ves

©
 N

atio
n
al In

stru
m

en
ts C

o
rp

o
ratio

n
7
-5

N
I-M

o
tio

n
 U

ser M
an

u
al

LabVIEW Code

Figure 7-5. Contoured Move in LabVIEW

1 Configure Vector Space
2 Set Operation Mode
3 Configure Buffer
4 Write Buffer

5 Start Motion
6 Read per Axis Status
7 Read per Axis Status
8 Check Move Complete Status

9 Clear Buffer
10 Set Operation Mode
11 Motion Error Handler

11109541 2

86

73

Chapter 7 Contoured Moves

NI-Motion User Manual 7-6 ni.com

Figure 7-6. Contoured Move True Case in LabVIEW

C/C++ Code
The following example code is not necessarily complete, and may

not compile if copied exactly. Refer to the examples folder on the

NI-Motion CD for files that are complete and compile as is.

// Main Function

void main(void)

{

u8 boardID;// Board identification number

u8 vectorSpace;// Vector space number

u16 csr = 0;// Communication status register

u16 axisStatus;// Axis status

u16 status;// Temporary copy of status

u16 moveComplete;// Move complete status

i32 i;

i32 points[1994] =NIMC_SPIRAL_ARRAY;// Array of 2D

points to move

u32 numPoints = 1994;//Total number of points to

contour through

i32 bufferSize = 1000;// The size of the buffer to

allocate on the //motion controller

f64 actualInterval;// The interval at which the

motion controller can // really contour

1 Check Buffer 2 Write Buffer

21

Chapter 7 Contoured Moves

© National Instruments Corporation 7-7 NI-Motion User Manual

i32* downloadData = NULL;// The temporary array that

is created to // download the points to the motion

controller

u32 currentDataPoint = 0;// Indicates the next point

in the points // array to download

i32 backlog;// Indicates the available space to

download more //points

u16 bufferState;// Indicates the state of the onboard

buffer

u32 pointsDone;// Indicates the number of points that

have been // consumed

u32 dataCopied = 0;// Keeps track of the points

copied

//Variables for modal error handling

u16 commandID;// The commandID of the function

u16 resourceID;// The resource ID

i32 errorCode;// Error code

///////////////////////////////

// Set the board ID

boardID = 1;

// Set the vector space number

vectorSpace = NIMC_VECTOR_SPACE1;

////////////////////////////////

// Configure a 2D vector space comprising of axes 1

and 2

err = flex_config_vect_spc(boardID, vectorSpace,

NIMC_AXIS1, NIMC_AXIS2, NIMC_NOAXIS);

CheckError;

//Set the operation mode to absolute position

err = flex_set_op_mode(boardID, vectorSpace,

NIMC_ABSOLUTE_CONTOURING);

CheckError;

// Configure buffer on motion controller memory (RAM)

// Note requested time interval is hardcoded to 10

milliseconds

err = flex_configure_buffer(boardID, 1 /*buffer

number*/, vectorSpace, NIMC_POSITION_DATA,

bufferSize, numPoints, NIMC_TRUE, 10,

&actualInterval);

CheckError;

// Send the first 1,000 points of the data

downloadData = malloc(sizeof(i32)*bufferSize);

Chapter 7 Contoured Moves

NI-Motion User Manual 7-8 ni.com

for(i=0;i<bufferSize;i++){

downloadData[i] = points[currentDataPoint++];

}

err = flex_write_buffer(boardID, 1/*buffer number*/,

bufferSize, NIMC_REGENERATION_NO_CHANGE,

downloadData, 0xFF);

free(downloadData);

downloadData = NULL;

CheckError;

// Start Motion

err = flex_start(boardID, vectorSpace, 0);

CheckError;

for(;;){

axisStatus = 0;

// Check for available space and download

remaining points // every 50 milliseconds

Sleep(50);

// Check to see if there are more points to

download

if(currentDataPoint < numPoints){

err = flex_check_buffer_rtn(boardID,

1/*buffer number*/, &backlog,

&bufferState, &pointsDone);

CheckError;

if(backlog >= 300){

downloadData =

malloc(sizeof(i32)*backlog);

dataCopied = 0;

for(i=0;i<backlog;i++){

if(currentDataPoint >

numPoints) break;

downloadData[i] =

points[currentDataPoint++];

dataCopied++;

}

err = flex_write_buffer (boardID, 1

/*buffer number*/, dataCopied,

NIMC_REGENERATION_NO_CHANGE,

downloadData, 0xFF);

free(downloadData);

downloadData = NULL;

Chapter 7 Contoured Moves

© National Instruments Corporation 7-9 NI-Motion User Manual

CheckError;

}

}

// Check the move complete status

err = flex_check_move_complete_status(boardID,

vectorSpace, 0, &moveComplete);

CheckError;

if(moveComplete) break;

// Check for axis off status/following error or

modal errors

//Read the communication status register check

the modal errors

err = flex_read_csr_rtn(boardID, &csr);

CheckError;

//Check the modal errors

if (csr & NIMC_MODAL_ERROR_MSG){

err = csr & NIMC_MODAL_ERROR_MSG;

CheckError;

}

// Check the motor off status on all the axes or

axis

err = flex_read_axis_status_rtn(boardID,

NIMC_AXIS1, &status);

CheckError;

axisStatus |= status;

err = flex_read_axis_status_rtn(boardID,

NIMC_AXIS2, &status);

CheckError;

axisStatus |= status;

if((axisStatus & NIMC_FOLLOWING_ERROR_BIT) ||

(axisStatus & NIMC_AXIS_OFF_BIT)){

break;//Break out of the for loop because an axis

was killed

}

}

// Set the mode back to absolute mode to get the

motion controller out of // contouring mode

err = flex_set_op_mode(boardID, vectorSpace,

NIMC_ABSOLUTE_POSITION);

CheckError;

Chapter 7 Contoured Moves

NI-Motion User Manual 7-10 ni.com

// Free the buffer allocated on the motion controller

memory

err = flex_clear_buffer(boardID, 1/*buffer

number*/);

CheckError;

return;// Exit the Application

//////////////////////

// Error Handling

//

nimcHandleError; //NIMCCATCHTHIS:

// Check to see if there were any Modal Errors

if (csr & NIMC_MODAL_ERROR_MSG){

do{

// Get the command ID, resource ID, and the

error code of the // modal error from the

error stack on the device

flex_read_error_msg_rtn(boardID,&commandI

D,&resourceID, &errorCode);

nimcDisplayError(errorCode,commandID,res

ourceID);

//Read the communication status register

flex_read_csr_rtn(boardID,&csr);

}while(csr & NIMC_MODAL_ERROR_MSG);

}

else// Display regular error

nimcDisplayError(err,0,0);

return;// Exit the Application

}

© National Instruments Corporation 8-1 NI-Motion User Manual

8
Reference Moves

Use reference moves to move the axes to a known starting location and

orientation. Reference functions include Find Reference, Check Reference,

Wait Reference, Read Reference Status, Load Reference Parameters, and

Get Reference Parameters.

Use the Check Reference function to determine if the Find Reference

operation is complete. This function is often placed in a loop that continues

until the status for the Find Reference operation is shown to be complete.

You can use the Wait Reference function if there is no need to monitor the

status of the Find Reference function.

Find Reference Move

Use a Find Reference move to initiate a search operation to find a reference

position. Available search operations include home switch, index pulse,

forward limit switch, reverse limit switch, center, or run sequence. Refer to

the NI-Motion VI Help or the NI-Motion Function Help for information

about reference move options.

Chapter 8 Reference Moves

NI-Motion User Manual 8-2 ni.com

Reference Move Algorithm

Figure 8-1. Find Reference Move Algorithm

Load Velocity

Load Jerk

Load Acceleration/
Deceleration

Find Reference

Typically a Find Home

Find Reference

Typically a Find Index

Move
Constraints

Loop Waiting for Find Complete

Check Reference

Loop Waiting for Find Complete

Check Reference

Chapter 8 Reference Moves

© National Instruments Corporation 8-3 NI-Motion User Manual

LabVIEW Code

Figure 8-2. Find Reference Move in LabVIEW

C/C++ Code
The following example code is not necessarily complete, and may

not compile if copied exactly. Refer to the examples folder on the

NI-Motion CD for files that are complete and compile as is.

// Main Function

void main(void){

u8 boardID;// Board identification number

u8 axis;// Axis number

f64 acceleration=100;// Acceleration value in RPS/s

f64 velocity=200;// Velocity value in RPM

u16 found, finding;// Check reference statuses

u16 axisStatus;// Axis status

u16 csr = 0;// Communication status register

i32 position;// Current position of axis

i32 scanVar;// Scan variable to read in values not

supported by

// the scanf function

1 Load Velocity
2 Load Acceleration/Deceleration
3 Load Acceleration/Deceleration

4 Load S-Curve Time
5 Find Reference
6 Check Reference

7 Read per Axis Status
8 Check Reference
9 Motion Error Handler

1 2 3 4 5 876

Chapter 8 Reference Moves

NI-Motion User Manual 8-4 ni.com

//Variables for modal error handling

u16 commandID;// The commandID of the function

u16 resourceID;// The resource ID

i32 errorCode;// Error code

//Get the board ID

printf("Enter the Board ID: ");

scanf("%d", &scanVar);

boardID=(u8)scanVar;

//Check if the device is at power up reset condition

err = flex_read_csr_rtn(boardID, &csr);

CheckError;

if (csr & NIMC_POWER_UP_RESET){

printf("\nThe FlexMotion device is in the reset

condition. Please initialize the device before

");

printf("running this example. The

\"flex_initialize_controller\" function will

initialize the ");

printf("board with settings selected through

Measurement & Automation Explorer.\n");

return;

}

//Get the axis number

printf("Enter the axis: ");

scanf("%d",&scanVar);

axis=(u8)scanVar;

//Flush the Stdin

fflush(stdin);

//Load acceleration and deceleration to the axis

selected

err = flex_load_rpsps(boardID, axis, NIMC_BOTH,

acceleration, 0xFF);

CheckError;

//Load velocity to the axis selected

err = flex_load_rpm(boardID, axis, velocity, 0xFF);

CheckError;

//Start the Find Reference move

err = flex_find_reference(boardID, axis, 0,

NIMC_FIND_HOME_REFERENCE);

CheckError;

Chapter 8 Reference Moves

© National Instruments Corporation 8-5 NI-Motion User Manual

//Wait for Find Reference to complete on the axis AND

also check //for modal errors at the same time

do{

//Read the current position of axis

err = flex_read_pos_rtn(boardID, axis,

&position);

CheckError;

//Display the current position of axis

printf("\rAxis %d position: %10d", axis,

position);

//Check if the axis has stopped because of axis

off or following //error

err = flex_read_axis_status_rtn(boardID, axis,

&axisStatus);

//Check if the reference has finished finding

err = flex_check_reference(boardID, axis, 0,

&found, &finding);

CheckError;

//Read the communication status register - check

the modal //error bit

err = flex_read_csr_rtn(boardID, &csr);

CheckError;

if (csr & NIMC_MODAL_ERROR_MSG)

{

flex_stop_motion(boardID,NIMC_AXIS1,

NIMC_DECEL_STOP, 0);//Stop the Motion

err = csr & NIMC_MODAL_ERROR_MSG;

CheckError;

}

//test for find reference complete, following

error, or axis //off status

}while (!(axisStatus & (NIMC_FOLLOWING_ERROR_BIT |

NIMC_AXIS_OFF_BIT)) && finding);

printf("\nAxis %d position: %10d", axis, position);

if (found)

printf("\rAxis found reference");

else

printf("\rAxis did not find reference");

printf("\n\nFinished\n");

return;// Exit the Application

Chapter 8 Reference Moves

NI-Motion User Manual 8-6 ni.com

///

/////////////

// Error Handling

//

nimcHandleError;

// Check to see if there were any Modal Errors

if (csr & NIMC_MODAL_ERROR_MSG){

do{

//Get the command ID, resource ID, and the error

code of the modal

//error from the error stack on the device

flex_read_error_msg_rtn(boardID,&commandID,&reso

urceID, &errorCode);

nimcDisplayError(errorCode,commandID,resourceID)

;

//Read the communication status register

flex_read_csr_rtn(boardID,&csr);

}while(csr & NIMC_MODAL_ERROR_MSG);

}

else// Display regular error

nimcDisplayError(err,0,0);

return;// Exit the Application

}

© National Instruments Corporation 9-1 NI-Motion User Manual

9
Blending Moves

Use blending moves to create continuous motion between two or more

move segments.

Blending

Blending, also called velocity blending, superimposes the velocity profiles

of two moves to maintain continuous motion. Blending is useful when

continuous motion between concatenated move segments is important.

Examples of some applications that can use blending are scanning,

welding, inspection, and fluid dispensing.

Blending must occur on velocity profiles of two move segments, so the end

positions of each move segment may or may not be reached. For example,

if you are blending two straight-line moves that form a 90º angle, the

blended move must round the corner to make the move continuous. In this

case, the move never reaches the exact position where the two straight lines

meet, but instead follows the rounded corner, as shown in Figure 9-1.

Figure 9-1. Two Blended Straight-Line Moves

Motion controllers can perform blending between two straight-line moves,

between two arc moves, or between straight-line and arc moves. Blending

does not work for reference and contoured moves.

1 Starting Position 2 End Point 3 Corner Rounded by Blending

31

2

Chapter 9 Blending Moves

NI-Motion User Manual 9-2 ni.com

There are three ways you can start the second move in a blend:

• Superimpose the two moves by starting the second move as the first

move starts to decelerate

• Start the second move after the first profile is complete

• Start the second move after the first profile is complete and the added

delay time has elapsed

Refer to the Move Profiles section of Chapter 4, What You Need to Know

about Moves, for more information about move profiles.

Superimpose Two Moves
Superimposing two moves is the most common use of blending. In this

case, the motion controller tries to maintain continuous motion by

superimposing the two move segments such that the second move segment

starts its profile while the first move is decelerating, as shown in

Figure 9-2.

Figure 9-2. Superimposing Two Moves

The velocity during the superimposition depends on the cruising velocity,

deceleration, and jerk of the first move segment, and the jerk, acceleration,

and cruising velocity of the second move segment.

1 Blending Starts 2 Blend is Complete 3 Actual Velocity

Velocity

Time

1 2 3

Chapter 9 Blending Moves

© National Instruments Corporation 9-3 NI-Motion User Manual

Blend after First Move Is Complete
Blending moves after the first move is complete causes the first move

segment to come to a complete stop before starting the profile of the second

segment, as shown in Figure 9-3.

Figure 9-3. Blending after Move Complete

This type of blending is useful if you want to start two move segments, one

after the other, with no delay between them.

1 Blending Starts 2 Blend is Complete

Velocity

Time

1 2

Chapter 9 Blending Moves

NI-Motion User Manual 9-4 ni.com

Blend after Delay
You can blend two moves after a delay at the end of the first move, as

shown in Figure 9-4.

Figure 9-4. Blending after a Delay

Blending in this manner is useful if you want to start two move segments

after a deterministic delay. The two move segments can be either

straight-line moves or arc moves.

Because blending occurs on velocity profiles, the effect of reaching the end

positions of the move segments and the maximum velocity depends on the

velocity, acceleration, deceleration, and jerk loaded for the two move

segments.

Because two move segments are always used while blending, it is very

important that you wait for the blend to complete before loading the next

move segment you want to blend.

1 Blending Starts 2 Blend is Complete 3 User-Defined Delay

Velocity

Time

1 2

3

Chapter 9 Blending Moves

© National Instruments Corporation 9-5 NI-Motion User Manual

Blending Algorithm
Figure 9-5 illustrates a generic algorithm for blending moves.

Figure 9-5. Blending Algorithm

Start Motion

Load Move Segment 2

Blend Motion

Perform Measurements
(Optional)

Load Move Segment 1

Coordinate Space,

Move Constraints, etc.

Loop Waiting for Blend Complete

Load Move Segment n

Blend Motion

Perform Measurements
(Optional)

Loop Waiting for Blend Complete

C
h

ap
ter 9

B
len

d
in

g
 M

o
ves

N
I-M

o
tio

n
 U

ser M
an

u
al

9
-6

n
i.co

m

LabVIEW Code

Figure 9-6. Blended Straight-Line Move and Arc Move in LabVIEW

1 Configure Vector Space
2 Load Velocity
3 Load Acceleration/Deceleration
4 Load Acceleration/Deceleration
5 Load S-Curve Time
6 Set Operation Mode
7 Load Vector Space Position

8 Start Motion
9 Load Blend Factor
10 Load Circular Arc
11 Blend Motion
12 Check Blend Complete Status
13 Read per Axis Status
14 Read per Axis Status

15 Load Vector Space Position
16 Blend Motion
17 Check Move Complete Status
18 Read per Axis Status
19 Read per Axis Status
20 Motion Error Handler

3

2 4

5 20

7

1961 10

12
17

1813 14

15

16

8

119

Chapter 9 Blending Moves

© National Instruments Corporation 9-7 NI-Motion User Manual

C/C++ Code
The following example code is not necessarily complete, and may

not compile if copied exactly. Refer to the examples folder on the

NI-Motion CD for files that are complete and compile as is.

// Main Function

void main(void)
{

u8 boardID;// Board identification number
u8 vectorSpace;// Vector space number
u16 csr = 0;// Communication status register
u16 axisStatus;// Axis status
u16 status;
u16 complete;//Move or blend complete status

//Variables for modal error handling
u16 commandID;// The commandID of the function
u16 resourceID;// The resource ID
i32 errorCode;// Error code

///////////////////////////////
// Set the board ID
boardID = 1;
// Set the vector space number
vectorSpace = NIMC_VECTOR_SPACE1;
////////////////////////////////

// Configure a 2D coordinate space comprised of axes 1,
and 2

err = flex_config_vect_spc(boardID, vectorSpace,
NIMC_AXIS1, NIMC_AXIS2, NIMC_NOAXIS);
CheckError;

// Set the velocity for the move (in counts/sec)
err = flex_load_velocity(boardID, vectorSpace, 10000,
0xFF);
CheckError;

// Set the acceleration for the move (in counts/sec^2)
err = flex_load_acceleration(boardID, vectorSpace,
NIMC_ACCELERATION, 100000, 0xFF);
CheckError;

// Set the deceleration for the move (in counts/sec^2)
err = flex_load_acceleration(boardID, vectorSpace,
NIMC_DECELERATION, 100000, 0xFF);
CheckError;

// Set the jerk or s-curve in sample periods
err = flex_load_scurve_time(boardID, vectorSpace, 1,
0xFF);
CheckError;

// Set the operation mode to absolute position

Chapter 9 Blending Moves

NI-Motion User Manual 9-8 ni.com

err = flex_set_op_mode(boardID, vectorSpace,
NIMC_ABSOLUTE_POSITION);
CheckError;

// Load the first straight-line segments to position
5000, 5000

err = flex_load_vs_pos(boardID, vectorSpace, 5000,
5000, 0, 0xFF);
CheckError;

// Start the move
err = flex_start(boardID, vectorSpace, 0);
CheckError;

// Load Circular Arc - making a counter-clockwise
semi-circle

err = flex_load_circular_arc (boardID, vectorSpace,
5000/*radius*/, 0.0/*startAngle*/,
180.0/*travelAngle*/, 0xFF);
CheckError;

// Blend the move
err = flex_blend(boardID, vectorSpace, 0);
CheckError;

// Wait for blend to complete before loading the next
segment

do

{
axisStatus = 0;

// Check the blend complete status
err = flex_check_blend_complete_status(boardID,
vectorSpace, 0, &complete);
CheckError;

// Check the following error/axis off status for axis
1

err = flex_read_axis_status_rtn(boardID,
NIMC_AXIS1, &status);
CheckError;
axisStatus |= status;

// Check the following error/axis off status for axis
2

err = flex_read_axis_status_rtn(boardID,
NIMC_AXIS2, &status);
CheckError;
axisStatus |= status;

//Read the communication status register and check
the modal //errors
err = flex_read_csr_rtn(boardID, &csr);
CheckError;

//Check the modal errors
if (csr & NIMC_MODAL_ERROR_MSG)

Chapter 9 Blending Moves

© National Instruments Corporation 9-9 NI-Motion User Manual

{
err = csr & NIMC_MODAL_ERROR_MSG;
CheckError;

}

Sleep(50); //Check every 50 ms

}while (!complete && !(axisStatus &
NIMC_FOLLOWING_ERROR_BIT) && !(axisStatus &
NIMC_AXIS_OFF_BIT)); //Exit on move
//complete/following error/axis off

// Load the final straightline segments to position 0, 0
err = flex_load_vs_pos(boardID, vectorSpace, 0, 0, 0,
0xFF);
CheckError;

// Wait for move to complete because this is the final
segment

do

{
axisStatus = 0;

// Check the move complete status
err = flex_check_move_complete_status(boardID,
vectorSpace, 0, &complete);
CheckError;

// Check the following error/axis off status for axis
1

err = flex_read_axis_status_rtn(boardID,
NIMC_AXIS1, &status);
CheckError;
axisStatus |= status;

// Check the following error/axis off status for axis
2

err = flex_read_axis_status_rtn(boardID,
NIMC_AXIS2, &status);
CheckError;
axisStatus |= status;

//Read the communication status register and check
the modal //errors
err = flex_read_csr_rtn(boardID, &csr);
CheckError;

//Check the modal errors
if (csr & NIMC_MODAL_ERROR_MSG)
{

err = csr & NIMC_MODAL_ERROR_MSG;
CheckError;

}

Sleep(50); //Check every 50 ms

}while (!complete && !(axisStatus &
NIMC_FOLLOWING_ERROR_BIT) && !(axisStatus &

Chapter 9 Blending Moves

NI-Motion User Manual 9-10 ni.com

NIMC_AXIS_OFF_BIT));
//Exit on move complete/following error/axis off

return;// Exit the Application

///
// Error Handling
//
nimcHandleError; //NIMCCATCHTHIS:

// Check to see if there were any Modal Errors

if (csr & NIMC_MODAL_ERROR_MSG){
do{

//Get the command ID, resource ID, and the
error code of the //modal error from the error
stack on the device

flex_read_error_msg_rtn(boardID,&commandID,
&resourceID, &errorCode);
nimcDisplayError(errorCode,commandID,resou
rceID);

//Read the communication status register
flex_read_csr_rtn(boardID,&csr);

}while(csr & NIMC_MODAL_ERROR_MSG);
}

else// Display regular error
nimcDisplayError(err,0,0);

return;// Exit the Application
}

© National Instruments Corporation 10-1 NI-Motion User Manual

10
Electronic Gearing and
Camming

Use electronic gearing or camming to synchronize the movement of one or

more slave axes to the movement of a master device, which can be an

encoder, ADC, or the trajectory of another axis. The movement of the slave

axes may be at a higher or lower gear ratio than the master. For example,

every turn of the master axis may cause a slave axis to turn twice.

Gearing

Electronic gearing allows one slave motor to be driven in proportion to a

master motor or feedback sensor, such as an encoder or torque (analog)

sensor.

As the slave follows the master position at a constant ratio, the effect is

similar to that of two axes mechanically geared.

Electronic gearing has several advantages over mechanical gears. The most

notable is flexibility because you can change gear ratios on-the-fly. The

other major advantage to electronic gearing is that you can superimpose a

move over a geared axis. The superimposed move is added to the geared

profile of the slave axis, which allows the slave axis to be synchronized

on-the-fly.

Chapter 10 Electronic Gearing and Camming

NI-Motion User Manual 10-2 ni.com

Algorithm

Figure 10-1. Electronic Gearing Algorithm

The gear ratio is used to determine how far the slave axis must move in

proportion to the master when gearing is enabled. The gear ratio can be

absolute or relative.

Slave axis move = Master axis position × Gear ratio

Relative gearing allows you to change the gear ratio on-the-fly. The master

move is calculated based on the master reference position, which is updated

when gearing is enabled and is updated each time a new gear ratio is loaded.

Set the Gear Ratio

Load Move Constraints

Set Operation Mode

Load Target Position

Start Motion on Slave Axis

Enable gearing on the
Slave Axis

Gearing

Superimposed
Straight-line Move

(optional)

Designate a Master Device The device can be one of the following:
• the trajectory generator of another axis
• an encoder driven externally
• αν analog sensor connected to one
 of the analog channels of the motion
 controller

The slave axis now moves in
proportion to the master device.

Chapter 10 Electronic Gearing and Camming

© National Instruments Corporation 10-3 NI-Motion User Manual

For example, if you have a gearing ratio of 2:1 (slave:master), the slave

moves 20 counts when the master device moves 10 counts.

Figure 10-2. Relative Gearing at Enable

Absolute gearing behaves similarly to relative gearing in that when gearing

is enabled, the slave axis follows the master axis movement as it is defined

by the gear ratio. The difference between relative and absolute gearing is

that the reference position calculated for the master axis is updated only

when gearing is enabled. This difference is apparent when the gear ratio is

updated on-the-fly.

For example, if the gear ratio is 2:1, the current master position is 1010, the

current slave position is 3020, and the gear ratio is changed to 3:1, the slave

axis jumps from 3020 to 3030 but the master position remains the same.

Figure 10-3. Absolute Gearing at Gear Ratio Change

Master Position

Master Position at Enable

1000 1010

Master Position
After MoveMove

Slave Position

Slave Position at Enable

3000 3020

Slave Position
After MoveMove

Master Position

Master Position
at Enable

1000 1010

Master Position
After MoveMove

Slave Position

Slave Position
at Enable

3000 3030

Slave Position
After Gear Change

Jump

3020

Slave Position
After Move

Chapter 10 Electronic Gearing and Camming

NI-Motion User Manual 10-4 ni.com

Changing a gear ratio on-the-fly during absolute gearing allows you to

quickly synchronize the slave axis with the master axis.

Note When the gear ratio is changed on-the-fly, the slave axis moves at full torque to the

new position.

Gear Master
An axis can be geared to another axis, or to an encoder or ADC.

When you gear an axis to another axis, the slave axis follows the trajectory

generation of the master axis. For example, if you manually move the

master axis, the slave axis does not move because the trajectory generator

of the master axis is not active.

When you gear an axis to an encoder, or feedback device, the slave axis

follows the feedback generated by the encoder. If the encoder detects

movement, the slave moves proportionally to information returned by the

encoder. For example, if you twist the master axis connected to the encoder,

the slave axis also turns because it is using the position information

gathered by the encoder.

When an axis is geared to an ADC, the slave axis follows the binary value

of the ADC as if it were a position. For example, if the binary code for 2 V

is 6553, the slave axis tracks to this position.

Chapter 10 Electronic Gearing and Camming

© National Instruments Corporation 10-5 NI-Motion User Manual

LabVIEW Code

Figure 10-4. Tracking an Encoder Using Electronic Gearing with Superimposed Move

C/C++ Code
The following example code is not necessarily complete, and may

not compile if copied exactly. Refer to the examples folder on the

NI-Motion CD for files that are complete and compile as is.

// Main Function

void main(void)

{

u8 boardID; // Board identification number

u8 slaveAxis; // Slave axis number

u8 master; // Gear master

u16 csr = 0; // Communication status register

u16 moveComplete;

//Variables for modal error handling

u16 commandID;// The command ID of the function

u16 resourceID;// The resource ID of the function

i32 errorCode;// Error code

///////////////////////////////

1 Configure Gear Master
2 Load Gear Ratio
3 Enable Gearing
4 Wait
5 Load Velocity
6 Load Acceleration/Deceleration

7 Set Operation Mode
8 Load Target Position
9 Start Motion
10 Wait for Move Complete
11 Enable Gearing Single Axis
12 Read per Axis Status

1211109876543

2

1

Chapter 10 Electronic Gearing and Camming

NI-Motion User Manual 10-6 ni.com

// Set the board ID

boardID = 1;

// Set the axis number

slaveAxis = NIMC_AXIS1;

// Master is encoder 4

master = NIMC_ENCODER4;

////////////////////////////////

// Set up the gearing configuration for the slave

axis

err = flex_config_gear_master(boardID, slaveAxis,

master);

CheckError;

//Load Gear Ratio 3:2

err = flex_load_gear_ratio(boardID, slaveAxis,

NIMC_RELATIVE_GEARING, 3/* ratioNumerator*/, 2/*

ratioDenominator*/, 0xFF);

CheckError;

//---

// Enable gearing on slave axis

//---

err = flex_enable_gearing_single_axis (boardID,

slaveAxis, NIMC_TRUE);

CheckError;

// Wait for 5,000 ms (5 seconds)

Sleep(5000);

//---

// Set up the move parameters for the superimposed

move

//---

// Set the operation mode to relative

err = flex_set_op_mode(boardID, slaveAxis,

NIMC_RELATIVE_POSITION);

CheckError;

// Load velocity in counts/s

err = flex_load_velocity(boardID, slaveAxis, 10000,

0xFF);

CheckError;

// Load acceleration and deceleration in counts/s^2

err = flex_load_acceleration(boardID, slaveAxis,

NIMC_BOTH, 100000, 0xFF);

CheckError;

Chapter 10 Electronic Gearing and Camming

© National Instruments Corporation 10-7 NI-Motion User Manual

// Load the target position for the registration

(superimposed) //move

err = flex_load_target_pos(boardID, slaveAxis, 5000,

0xFF);

CheckError;

// Start registration move on the slave

err = flex_start(boardID, slaveAxis, 0);

CheckError;

err = flex_wait_for_move_complete (boardID,

slaveAxis, 0, 1000/*ms timeout*/,

20/*ms pollInterval*/, &moveComplete);

CheckError;

//---

// Disable gearing on slave axis

//---

err = flex_enable_gearing_single_axis (boardID,

slaveAxis, NIMC_FALSE);

CheckError;

return;// Exit the Application

///////////////////////

// Error Handling

nimcHandleError; //NIMCCATCHTHIS:

// Check to see if there were any Modal Errors

if (csr & NIMC_MODAL_ERROR_MSG){

do{

//Get the command ID, resource ID, and the

error code of the //modal error from the

error stack on the device

flex_read_error_msg_rtn(boardID,&commandI

D,&resourceID, &errorCode);

nimcDisplayError(errorCode,commandID,res

ourceID);

//Read the communication status register

flex_read_csr_rtn(boardID,&csr);

}while(csr & NIMC_MODAL_ERROR_MSG);

}

else// Display regular error

nimcDisplayError(err,0,0);

return;// Exit the Application

}

Chapter 10 Electronic Gearing and Camming

NI-Motion User Manual 10-8 ni.com

Camming

Electronic camming operates similarly to electronic gearing in that the

move distance of an axis is proportional to the move distance of its master

device. Camming differs from gearing in how the master/slave ratio is

handled by the motion controller. Gearing is used in applications where a

constant gear value creates a linear slave position profile, as shown in

Figure 10-5.

Figure 10-5. Master/Slave Ratio in Gearing

Camming creates a more flexible profile by using more master/slave ratios.

These ratios are handled automatically by the motion controller, allowing

precise switching of the gear ratios, as shown in Figure 10-6. Camming is

used in applications where the slave axis follows a non-linear profile from

a master device.

Slave

Master
∆ Master

Gear ratio = ∆ Slave/∆ Master

∆
 S

la
ve

Chapter 10 Electronic Gearing and Camming

© National Instruments Corporation 10-9 NI-Motion User Manual

Figure 10-6. Multiple Camming Gear Ratios

An example of a motion control system that can benefit from the flexibility

of electronic camming is welding parts as they travel on a conveyor belt.

Figure 10-7 shows that the welding point moves to the first position, and

then welds the material for a couple of seconds. Because the conveyor belt

keeps moving at a constant rate, the welding point must follow the material

at the same speed as the conveyor belt during the weld process. When the

welding process is finished for one item, the welding point must quickly

return to its initial position and the process repeats.

Slave

Master

Ratio
1

Ratio
2

Ratio
3

Ratio
4

Ratio
2

Master Cycle
Begins to Repeat

Ratio
1

Chapter 10 Electronic Gearing and Camming

NI-Motion User Manual 10-10 ni.com

Figure 10-7. Welding Application

In this application, the master device is the position encoder attached to the

conveyor belt, and the slave axis is the actuator that moves the welding

point. The slave axis repeatedly performs a two-segment movement:

1. First, it follows the material with the same speed as the conveyor belt.

2. Next, it returns to the initial position as the next material approaches.

Each segment of the move is represented with a gear ratio that dictates how

fast and which direction the welding point is moving in relative to the

conveyor belt.

This application requires the slave axis to switch from one ratio to the other

at the correct master position, otherwise the welding process is not

repeatable. If this application used gearing instead of camming, the latency,

or delay, of loading a new gear ratio might cause an accumulation of

position errors.

1 Conveyor belt
2 Movement of the welder as it follows the object, and then returns to the initial

position
3 Welding point

3

2

1

Chapter 10 Electronic Gearing and Camming

© National Instruments Corporation 10-11 NI-Motion User Manual

Algorithm
Similar to gearing, in a camming application, a slave axis can perform any

move when camming is enabled. The move profile is superimposed over

the camming profile.

Figure 10-8. Camming Algorithm

Set the Master Cycle

Load Move Constraints

Set Operation Mode

Load Target Position

Start Motion on Slave Axis

Enable Camming

Camming

Superimposed
Straight-line Move

(optional)

Designate a Master
Camming Device

The device can be one of the following:
• an axis
• an encoder
• an analog sensor

The slave axis now moves in
proportion to the master device.

Configure the Buffer
for Slave Positions

Load the Slave Positions
to the Cam Table

Set the Master and
Slave Offset (optional)

Chapter 10 Electronic Gearing and Camming

NI-Motion User Manual 10-12 ni.com

Camming Table
When a camming operation is active, the slave axis follows a profile that is

established using a list of master and slave positions pairs, called the

camming table. Refer to Table 10-1 for an example of a camming table.

Figure 10-9 shows that, in the welding example defined in Figure 10-7, the

conveyor belt is moving at 1,000 counts/s and the parts to be welded are

6,000 counts apart. To weld the part, the welding point must follow the part

down the conveyor belt for 2 seconds.

Figure 10-9. Welding Application Time and Speed Constraints

In this welding application, the slave axis must follow the part with the

same velocity as the conveyor belt while welding is in progress. Because it

takes two seconds to weld each part, the welding point and conveyor belt

have both moved 2,000 counts by the time the welding is complete. This

part of the welding application creates the first move segment.

For the second move segment, the welding point must return to its original

position so that it can weld the next part on the conveyor belt. To move the

welding point to its original position at the same time that the next part is

in the correct position on the conveyor belt, the welding point must travel

Conveyor belt speed
(1000 counts/s)

Time to dwell
during welding

(2 seconds)
6,000
counts

between
welding

spots

Chapter 10 Electronic Gearing and Camming

© National Instruments Corporation 10-13 NI-Motion User Manual

2,000 counts in the opposite direction of the conveyor belt at half the speed

that the conveyor belt is traveling at. Figure 10-10 shows the move profile

of the first and second move segments.

Figure 10-10. First and Second Move Segment Profile

Table 10-1 shows the camming table that corresponds to the move profile

in Figure 10-10

.

Table 10-1 shows that the camming cycle is 6,000 counts and is divided into

equal length segments.

Tip Because the camming cycle is 6,000 counts, the master cycle must also be

6,000 counts.

Table 10-1. Welding Application Cam Table

Time

(seconds)

Master

Position

(counts)

Slave Position

(counts) Ratio*

0 0 0 —

2 2000 2000 1

4 4000 1000 –0.5

6 6000 0 –0.5

* Ratio = ∆SlaveDistance / ∆MasterDistance

Slave

Master

2000

1000

2000 4000 6000

S
e
g
m

e
n
t
1 Segm

ent 2

Chapter 10 Electronic Gearing and Camming

NI-Motion User Manual 10-14 ni.com

Each row of data defines a gear ratio. The camming profile is repeated after

a camming cycle is completed. The master position is always interpreted

inside the modulus defined by the camming cycle.

For example, initially, the master axis moves from 0 to 1000. The gear ratio

used for this move is 1:1 because the master position is in the 0 to 2000

interval. With a gear ratio of 1:1, the slave axis moves at the same speed as

the master device to position 1000.

Figure 10-11 shows that the master position in this interval is inside the

modulus.

Figure 10-11. Master and Slave Positions at Enable

Figure 10-12 shows that if the master axis moves to position 2000, the gear

ratio does not change because the current master position is still inside the

0 to 2000 interval.

Figure 10-12. Master Axis Moves within Interval

Figure 10-13 shows that when the master axis moves to position 4,000, the

gear ratio changes to –0.5. The slave axis travels half the distance that the

master axis travels, and it travels in the opposite direction.

0 1000
Master

0 1000
Slave

0 1000
Master

0 1000

2000

2000
Slave

Chapter 10 Electronic Gearing and Camming

© National Instruments Corporation 10-15 NI-Motion User Manual

Figure 10-13. Gear Ratio Change

Figure 10-14 shows that when the master reaches position 6000, the slave

axis moves back the original position, and the camming cycle begins again.

Figure 10-14. Camming Cycle Repeats

Slave Offset
In some camming applications, the slave axis might begin and end the

camming cycle at different positions, as shown in Table 10-2.

Table 10-2. Camming Profile with and without Slave Offset

Master Position

(counts)

Slave Position

(counts)

0 0

2000 2000

4000 1000

6000 500

0 2000
Master

0 20001000

4000

4000
Slave

0 2000
Master

0 20001000

4000

4000

6000

6000
Slave

Chapter 10 Electronic Gearing and Camming

NI-Motion User Manual 10-16 ni.com

Figure 10-15 shows that, after three camming cycles, the slave axis end

position is 500 counts away from the starting position (0) with the slave

offset, and that without the slave offset, the slave axis end position is

1500 counts away from the starting position (0).

With a slave offset of 500, the slave axis traverses the positions specified in

the camming table, but it does not maintain the camming ratio.

Figure 10-15. Camming without Offset

Without Offset

With Offset

Chapter 10 Electronic Gearing and Camming

© National Instruments Corporation 10-17 NI-Motion User Manual

Master Offset
If the material and welding point are not initially aligned, as shown in

Figure 10-16, the master offset must be applied to consider the position

difference.

Figure 10-16. Misaligned Material and Welding Point

Without the master offset, the master device position is already inside the

first interval as soon as the first material passes the welding point.

Figure 10-16 shows that the master cycle intervals are offset by 50 counts.

The master interval is shifted from 0, 2,000, 4,000, and 6,000 to 50, 2,050,

4,050, and 6,050.

Position = 50

Position = 0

When there is no master offset,
the master cycle begins at
position 0.

Chapter 10 Electronic Gearing and Camming

NI-Motion User Manual 10-18 ni.com

Figure 10-17. Camming Profile Starts when First Material Passes

Figure 10-18 shows the camming profile used for the application portrayed

in Figure 10-16 and Figure 10-17.

Figure 10-18. Camming Profiles with and without Master Offset

Camming starts
here at position 50

Master cycle begins
at position 50.

0

500

1000

1500

2000

2500

0 2000 4000 6000 8000 10000

Master

S
la

v
e

Without Master Offset

With Master Offset

Master Offset

Chapter 10 Electronic Gearing and Camming

© National Instruments Corporation 10-19 NI-Motion User Manual

LabVIEW Code

Figure 10-19. Axis to Axis Camming

C/C++ Code
The following example code is not necessarily complete, and may

not compile if copied exactly. Refer to the examples folder on the

NI-Motion CD for files that are complete and compile as is.

///////////////

// Main Function
void main(void)
{
 // Locals
 u8 boardID = 1; // Board ID as assigned by MAX
 f64 bufferInterval = 0; // Ignored

 // Master axis information
 u8 masterAxis = 2; // Master axis ID
 f64 camCycle = 70000; // Position cycle to repeat
the camming process

 // Slave axis information

1 Configure Camming Master
2 Configure Buffer
3 Write Buffer
4 Enable Camming Single Axis
5 Wait in a Sequence Structure
6 Set Operation Mode
7 Load Move Constraint

8 Load Target Position
9 Start Motion
10 Wait for Move Complete
11 Enable Camming Single Axis
12 Clear Buffer
13 Motion Error Handler

1 2 3 6 7 8

13121110954

Chapter 10 Electronic Gearing and Camming

NI-Motion User Manual 10-20 ni.com

 u8 slaveAxis = 1; // Slave axis ID
 u8 buffer = 1; // Buffer to contain the
cam table
 i32 positionArr[] = {0, 10000, 40000, 45000, 45000,
40000, 10000, 0}; // Position array
 u32 positionSize = sizeof(positionArr) / sizeof(i32);
// Number of positions in the array
 NIMC_DATA data; // Generic data structure
 i32 targetPos = 10000; // Position to move to
 f64 velocity = 10000; // Velocity limit for this move
 u16 moveComplete;

 // For error handling
 u16 csr; // Communication status
 u16 commandID; // Command ID that causes the
error
 u16 resourceID; // Resource ID that is set on
the failed command
 i32 errorCode; // Error code from the
controller

// Configuring camming profile.
// Configure the cam master & master cycle
 err = flex_configure_camming_master(boardID,
slaveAxis, masterAxis, camCycle);
 CheckError;

 // Configure the cam table
 err = flex_configure_buffer(boardID, buffer,
slaveAxis, NIMC_CAMMING_POSITION, positionSize,
positionSize, TRUE, bufferInterval, &bufferInterval);
 CheckError;

 // Write the data to the buffer
 err = flex_write_buffer(boardID, buffer,
positionSize, NIMC_REGENERATION_NO_CHANGE, positionArr,
0xFF);

CheckError;

 // Enable camming immediately
 err = flex_enable_camming_single_axis(boardID,
slaveAxis, TRUE, -1.0);
 CheckError;

 // At this point camming is engaged or started. You
can start the master
 // axis or insert other functionality here.
 Sleep(5000);

Chapter 10 Electronic Gearing and Camming

© National Instruments Corporation 10-21 NI-Motion User Manual

// Configure the superimposed move (optional)
// Set to absolute mode
 err = flex_set_op_mode(boardID, slaveAxis,
NIMC_ABSOLUTE_POSITION);
 CheckError;

 // Set the maximum velocity
 data.doubleData = velocity;
 err = flex_load_move_constraint(boardID, slaveAxis,
TnimcMoveConstraintVelocity, &data);
 CheckError;

 // Set the target position
 err = flex_load_target_pos(boardID, slaveAxis,
targetPos, 0xFF);
 CheckError;

 // Start the master axis movement
 err = flex_start(boardID, slaveAxis, 0x0);
 CheckError;

 // Wait for move to complete
 err = flex_wait_for_move_complete (boardID,
slaveAxis, 0x1, 20000, 20, &moveComplete);
 CheckError;

// Error Handling
//
nimcHandleError; //NIMCCATCHTHIS:

 // Disable camming
 flex_enable_camming_single_axis(boardID, slaveAxis,
FALSE, -1.0);

 // Clear (delete) the buffer
 flex_clear_buffer(boardID, buffer);

// Check to see if there were any Modal Errors
 flex_read_csr_rtn(boardID, &csr);
if (csr & NIMC_MODAL_ERROR_MSG)
 {
do
 {
// Get the command ID, resource and the error code of the
modal
//error from the error stack on the board

Chapter 10 Electronic Gearing and Camming

NI-Motion User Manual 10-22 ni.com

flex_read_error_msg_rtn(boardID, &commandID,
&resourceID, &errorCode);
nimcDisplayError(errorCode, commandID, resourceID);

//Read the Communication Status Register
flex_read_csr_rtn(boardID,&csr);

}while(csr & NIMC_MODAL_ERROR_MSG);
}
else// Display regular error
{
nimcDisplayError(err,0,0);
}
return;// Exit the Application
}

© National Instruments Corporation 11-1 NI-Motion User Manual

11
Acquiring Time-Sampled
Position and Velocity Data

NI motion controllers can acquire a buffer of position and velocity data that

is firmware-timed. After you command the motion controller to acquire

position and velocity data, a separate acquire data task is created in the

real-time operating system that reads time-sampled position and velocity

data into a FIFO buffer on the motion controller. You can read data in from

this buffer asynchronously from the host computer, as shown in

Figure 11-1.

Figure 11-1. Acquire Data Path

The acquire data task has higher priority than any onboard programs or

housekeeping tasks, but it has a lower priority than the I/O reaction and host

communication tasks. To achieve the best possible performance, keep host

communications to a minimum when acquiring data.

Step 1: Reads the
position velocity

Acquire data task

Step 2: Copies position and
velocity data to FIFO buffer

Step 3: Reads data from
the buffer asynchronously

Chapter 11 Acquiring Time-Sampled Position and Velocity Data

NI-Motion User Manual 11-2 ni.com

The FIFO buffer is of a fixed size that can accommodate 4,096 samples for

one axis. One sample consists of position data, in counts or steps, and

velocity data, in counts/s or steps/s. As you increase the number of axes

from which you are acquiring data, you also decrease the total number of

samples you can acquire per axis. For example, you can acquire up to

1,024 samples per axis for four axes. You also can vary the time period

between acquired samples from 3 ms to 65,535 ms.

Algorithm

Figure 11-2. Acquire Data Algorithm

Acquire Data

Specify the number of axes, sample

period, and number of samples

Wait for Time = Sample Period

Wait until at least one sample

has been achieved

Read One Sample

Wait more than the sample period

to allow the controller to fill the FIFO

Loop if Wait Period > Sample Period

Chapter 11 Acquiring Time-Sampled Position and Velocity Data

© National Instruments Corporation 11-3 NI-Motion User Manual

The data must be read one sample at a time. A four-axis sample uses the

following pattern for returning the data.

If you request 1,024 samples, you must read each of the 1,024 samples

individually.

Axis 1 position

Axis 1 velocity

Axis 2 position

Axis 2 velocity

Axis 3 position

Axis 3 velocity

Axis 4 position

Axis 4 velocity

Chapter 11 Acquiring Time-Sampled Position and Velocity Data

NI-Motion User Manual 11-4 ni.com

LabVIEW Code

Figure 11-3 acquires data for two axes, 200 samples, and three

milliseconds apart.

Figure 11-3. Acquire Data Using LabVIEW

C/C++ Code

The following example code is not necessarily complete, and may

not compile if copied exactly. Refer to the examples folder on the

NI-Motion CD for files that are complete and compile as is.

// Main Function

void main(void)

{

u8 boardID;// Board identification number

u16 csr = 0;// Communication status register

i32 i;

u16 axisMap;// Bitmap of axes for which data is

requested

1 Acquire Trajectory Data 2 Read Trajectory Data 3 Motion Error Handler

1 2 3

Chapter 11 Acquiring Time-Sampled Position and Velocity Data

© National Instruments Corporation 11-5 NI-Motion User Manual

i32 axis1Positions[200];// Array to store the

positions (1)

i32 axis1Velocities[200];// Array to store

velocities(1)

i32 axis2Positions[200];// Array to store the

positions (2)

i32 axis2Velocities[200];// Array to store

velocities(2)

u16 numSamples = 200;// Number of samples

i32 returnData[4];// Need size of 4 for 2 axes worth

of data

//Variables for modal error handling

u16 commandID;// The commandID of the function

u16 resourceID;// The resource ID

i32 errorCode;// Error code

///////////////////////////////

// Set the board ID

boardID = 1;

// Axes whose data needs to be acquired

axisMap = ((1<<1) | (1<<2)); // Axis 1 and axis 2

////////////////////////////////

err = flex_acquire_trajectory_data(boardID, axisMap,

numSamples, 3/* ms time period*/);

CheckError;

Sleep(numSamples * 3/* ms time period*/);

for(i=0; i<numSamples; i++){

Sleep (2);

// Read the trajectory data

err = flex_read_trajectory_data_rtn(boardID,

returnData);

CheckError;

// Two axes worth of data is read every sample

axis1Positions[i] = returnData[0];

axis1Velocities[i] = returnData[1];

axis2Positions[i] = returnData[2];

axis2Velocities[i] = returnData[3];

}

return;// Exit the Application

//////////////////////

// Error Handling

//

nimcHandleError; //NIMCCATCHTHIS:

Chapter 11 Acquiring Time-Sampled Position and Velocity Data

NI-Motion User Manual 11-6 ni.com

// Check to see if there were any Modal Errors

if (csr & NIMC_MODAL_ERROR_MSG){

do{

//Get the command ID, resource ID, and the

error code of the //modal error from the

error stack on the device

flex_read_error_msg_rtn(boardID,&commandI

D,&resourceID, &errorCode);

nimcDisplayError(errorCode,commandID,res

ourceID);

//Read the communication status register

flex_read_csr_rtn(boardID,&csr);

}while(csr & NIMC_MODAL_ERROR_MSG);

}

else// Display regular error

nimcDisplayError(err,0,0);

return;// Exit the Application

}

© National Instruments Corporation 12-1 NI-Motion User Manual

12
Synchronization

You can synchronize NI motion controllers with NI data and image

acquisition devices using breakpoints and high-speed captures.

Timing and triggering with NI-Motion is always related to either position

or velocity. Synchronizing position and velocity information with the

external world allows you to coordinate measurements with moves. You

can program the motion controller to trigger another device at specified

positions using RTSI or a pin on the Motion I/O connector. This

functionality is called breakpoints, which are divided into Absolute

Breakpoints, Relative Position Breakpoints, and Periodically Occurring

Breakpoints.

In some cases, it may be necessary to synchronize position with some

measurement occurring external to the motion controller. For example,

you might be aligning two fiber optic cables, in which case the maximum

optical power needs to correspond with the alignment position. To align the

fibers, the external device that is recording the optical power must trigger

the motion controller so that positions and optical power measurements can

be synchronized and analyzed. This functionality is known as High-Speed

Capture or trigger inputs. The motion controller can be triggered by

another device using RTSI or externally using a pin on the Motion I/O

connector. When triggered, the motion controller can latch the current

position of the encoder, which can be read and recorded.

Chapter 12 Synchronization

NI-Motion User Manual 12-2 ni.com

Table 12-1 shows the availability of breakpoint modes on each NI motion

controller.

Note If you are using a data or image acquisition device with your motion control system,

be aware that the NI SoftMotion Controller does not support the RTSI bus.

Note Breakpoints are not supported on the NI SoftMotion Controller.

Note When you are using the NI SoftMotion Controller with an Ormec device, you can

use two high speed captures per axis.

Absolute Breakpoints

Absolute position breakpoints allow you to trigger external activities as

the motors reach specified positions. For example, if you need to use an

image acquisition device to capture an image from a certain position while

the device under test is in continuous motion, the motion controller must be

able to trigger the image acquisition device as it reaches those positions.

The current position is continuously compared against the specified

breakpoint position by the encoder circuitry to produce a latency of less

than 100 ns.

After a breakpoint triggers, you must re-enable it for the breakpoint to work

again. In certain cases, such as buffered and periodic breakpoints, the

motion controller automatically re-enables the breakpoints.

The implementation for absolute breakpoints is divided into the buffered

breakpoint and single position breakpoint methods.

Table 12-1. Breakpoint Modes on NI Motion Controllers

Breakpoint Mode NI 7350

NI 7340, NI 7330, and

NI 7390

Absolute* Y Y

Relative* Y Y

Periodic Y N

Modulus N Y

Buffered Y N

* Available in buffered and single operation for NI 7350 and in single operation only for

all other controllers

Chapter 12 Synchronization

© National Instruments Corporation 12-3 NI-Motion User Manual

Note All breakpoints can be affected by jitter in the motion control system. For example,

if you have a very small breakpoint window, the jitter in the motion control system could

cause the position to change enough to reach the breakpoint when a breakpoint is not

intended. Increase the size of the breakpoint window to compensate for system jitter.

Buffered Breakpoints (NI 7350 only)
Instead of enabling breakpoints in your application at the software level,

you can create a buffer of breakpoints that you can pre-load into the motion

controller. The motion controller automatically arms the next breakpoint in

the buffer when the preceding breakpoint triggers. Therefore, enabling

breakpoints occurs on a firmware-timed basis, which enables you to use a

higher bandwidth.

Chapter 12 Synchronization

NI-Motion User Manual 12-4 ni.com

Buffered Breakpoint Algorithm
Figure 12-1 shows the basic algorithm for implementing buffered

breakpoints.

Figure 12-1. Buffered Breakpoint Algorithm

Configure the onboard buffer

Enable the breakpoint

Write buffer

Write the array of breakpoint

positions and the number of points

Write buffer (optional)

Write remaining breakpoint

positions to onboard buffer

Check the onboard buffer
(optional)

Check the number of

breakpoints consumed

Loop checking for buffered breakpoints usage

Load Breakpoint Array
• Set the buffer type to breakpoint positions
• Total Points is the total number of
 breakpoint positions you want to load
• Buffer Size is the size of the buffer you
 want to create on the device.
• Set Old Data Stop to TRUE if you do not
 want old data to be used
• Requested Interval = 0

Update breakpoint array

Clear buffer

Configure breakpoint
for buffered mode

Chapter 12 Synchronization

© National Instruments Corporation 12-5 NI-Motion User Manual

LabVIEW Code

Figure 12-2. Buffered Position Breakpoint in LabVIEW

C/C++ Code
The following example code is not necessarily complete, and may

not compile if copied exactly. Refer to the examples folder on the

NI-Motion CD for files that are complete and compile as is.

// Main function

void main (void)

{

// Resource variables

u8boardID = 1;// Board identification number

u8axis = NIMC_AXIS1;// Axis number

u8 buffer = 1;// Buffer number

// Modal error handling variables

u16 commandID;// The commandID of the function

u16 resourceID;// The resource ID

i32 errorCode;// Error code

u16 csr = 0;// Communication status

1 Configure Buffer
2 Write Buffer
3 Configure Breakpoint

4 Enable Breakpoint Output
5 Check Buffer

6 Clear Buffer
7 Motion Error Handler

76

3

5421

Chapter 12 Synchronization

NI-Motion User Manual 12-6 ni.com

// Buffer resources

i32 breakpointPositions[] = {1000, 1100, 1200, 1300,

1400, 1500, 1600};

u16 numberOfPoints = 7;// Number of breakpoints

f64 actualInterval;// Required in the function call

but not being //used

f64 requestedInterval = 10.0;// Required in the

function call but //not being used

u32 backLog;// Number of space available in buffer

u16 bufferState;// Buffer state

u32 pointsDone;// Number of breakpoints done or

consumed

// Configure the buffer for buffered breakpoint

err = flex_configure_buffer(boardID, buffer,axis,

NIMC_BREAKPOINT_DATA, numberOfPoints,

numberOfPoints,NIMC_TRUE, requestedInterval,

&actualInterval);

CheckError;

// Write the breakpoint position to the buffer

err = flex_write_buffer(boardID, buffer,

numberOfPoints, NIMC_REGENERATION_NO_CHANGE,

breakpointPositions, 0xFF);

CheckError;

// Configure the breakpoint to be buffered breakpoint

err = flex_configure_breakpoint(boardID, axis,

NIMC_ABSOLUTE_BREAKPOINT, NIMC_PULSE_BREAKPOINT,

NIMC_OPERATION_BUFFERED);

CheckError;

// Enable the breakpoint

err = flex_enable_breakpoint(boardID, axis,

NIMC_TRUE);

CheckError;

// Poll the status of the buffer, if you have more

breakpoint //positions to write, insert

flex_write_buffer call here.

do

{

// Check the buffer status

err = flex_check_buffer_rtn(boardID, buffer,

&backLog, &bufferState, &pointsDone);

CheckError;

Sleep(50);

Chapter 12 Synchronization

© National Instruments Corporation 12-7 NI-Motion User Manual

} while ((pointsDone != numberOfPoints) ||

(bufferState != NIMC_BUFFER_DONE));

// Clear the buffer

err = flex_clear_buffer(boardID, buffer);

CheckError;

return;

///

/////////////

// Error Handling

nimcHandleError; //NIMCCATCHTHIS:

// Check to see if there were any Modal Errors

if (csr & NIMC_MODAL_ERROR_MSG){

do{

//Get the command ID, resource ID, and the

error code of the //modal error from the

error stack on the device

flex_read_error_msg_rtn(boardID,&commandI

D,&resourceID, &errorCode);

nimcDisplayError(errorCode,commandID,res

ourceID);

//Read the communication status register

flex_read_csr_rtn(boardID,&csr);

}while(csr & NIMC_MODAL_ERROR_MSG);

}

else// Display regular error

nimcDisplayError(err,0,0);

return;// Exit the Application

}

Chapter 12 Synchronization

NI-Motion User Manual 12-8 ni.com

Single Position Breakpoints
Single position breakpoints execute one breakpoint per enabling.

Single Position Breakpoint Algorithm
Figure 12-3 shows the basic algorithm for implementing single position

breakpoints.

Figure 12-3. Single Position Breakpoint Algorithm

Enable breakpoint

Wait for
breakpoint to occur

Load a new
breakpoint position

Configure breakpoint

Configure breakpoint

for absolute mode

Load breakpoint position

Absolute position where

you want to trigger an event

Chapter 12 Synchronization

© National Instruments Corporation 12-9 NI-Motion User Manual

LabVIEW Code

Figure 12-4. Single Position Breakpoint in LabVIEW

1 Configure Breakpoint
2 Load Breakpoint Position

3 Enable Breakpoint Output
4 Read per Axis Status

5 Motion Error Handler

4

321

5

Chapter 12 Synchronization

NI-Motion User Manual 12-10 ni.com

Refer to Figure 12-5 for an example of how to route this breakpoint

using RTSI.

Figure 12-5. Single Position Breakpoint With RTSI Using LabVIEW

After the breakpoint is routed through RTSI, the trigger appears on both

the RTSI line and the breakpoint line on the Motion I/O connector.

C/C++ Code
The following example code is not necessarily complete, and may

not compile if copied exactly. Refer to the examples folder on the

NI-Motion CD for files that are complete and compile as is.

// Main Function

void main(void)

{

u8 boardID;// Board identification number

u8 axis; // Axis number

u16 csr = 0;// Communication status register

u16 axisStatus;// Axis status

i32 breakpointPosition[3] = {10000, 15000, 20000};

i32 i;

//Variables for modal error handling

u16 commandID;// The commandID of the function

u16 resourceID;// The resource ID

i32 errorCode;// Error code

1 Select Signal
2 Configure Breakpoint

3 Load Breakpoint Position
4 Enable Breakpoint Output

5 Read per Axis Status
6 Motion Error Handler

5

4321

6

Chapter 12 Synchronization

© National Instruments Corporation 12-11 NI-Motion User Manual

///////////////////////////////

// Set the board ID

boardID = 1;

// Set the axis number

axis = NIMC_AXIS1;

////////////////////////////////

// Route breakpoint 1 to RTSI line 1

err = flex_select_signal (boardID, NIMC_RTSI0

/*destination*/, NIMC_BREAKPOINT1/*source*/);

CheckError;

// Configure the breakpoint

err = flex_configure_breakpoint(boardID, axis,

NIMC_ABSOLUTE_BREAKPOINT /*mode*/,

NIMC_SET_BREAKPOINT /*action*/,

NIMC_OPERATION_SINGLE /*single operation*/);

CheckError;

for(i=0; i<3; i++){

// Load breakpoint position - where breakpoint

should occur

err = flex_load_pos_bp(boardID, axis,

breakpointPosition[i], 0xFF);

CheckError;

// Enable the breakpoint on axis 1

err = flex_enable_breakpoint(boardID, axis,

NIMC_TRUE);

CheckError;

do

{

// Check the breakpoint status

err = flex_read_axis_status_rtn(boardID,

axis, &axisStatus);

CheckError;

// Read the communication status register

and check the modal //errors

err = flex_read_csr_rtn(boardID, &csr);

CheckError;

// Check for modal errors

if (csr & NIMC_MODAL_ERROR_MSG)

{

err = csr & NIMC_MODAL_ERROR_MSG;

CheckError;

Chapter 12 Synchronization

NI-Motion User Manual 12-12 ni.com

}

Sleep (10); //Check every 10 ms

}while (!(axisStatus & NIMC_POS_BREAKPOINT_BIT));

// Wait for breakpoint to be triggered

}

return;// Exit the Application

//////////////////////

// Error Handling

nimcHandleError; //NIMCCATCHTHIS:

// Check to see if there were any Modal Errors

if (csr & NIMC_MODAL_ERROR_MSG){

do{

//Get the command ID, resource ID, and the

error code of the //modal error from the

error stack on the device

flex_read_error_msg_rtn(boardID,&commandI

D,&resourceID, &errorCode);

nimcDisplayError(errorCode,commandID,res

ourceID);

//Read the communication status register

flex_read_csr_rtn(boardID,&csr);

}while(csr & NIMC_MODAL_ERROR_MSG);

}

else// Display regular error

nimcDisplayError(err,0,0);

return;// Exit the Application

}

Relative Position Breakpoints

Relative position breakpoints trigger events based on a change in position

relative to the position at which the breakpoint was enabled.

Instead of keeping track of absolute positions and the current position,

you can use relative breakpoints to specify the breakpoint relative to the

position where the breakpoint is enabled.

For example, if you are creating a motion control system to control the

two-dimensional movement of a microscope, you might use relative

position breakpoints to move the microscope a specific distance in a

direction, and then hit a breakpoint that triggers a camera snap. The relative

Chapter 12 Synchronization

© National Instruments Corporation 12-13 NI-Motion User Manual

breakpoint is useful in this example because the current position is not

important. The application must move the axis a specific number of counts

from wherever it is, and then generate a breakpoint.

Note All breakpoints can be affected by jitter in the motion control system. For example,

if you have a very small breakpoint window, the jitter in the motion control system could

cause the position to change enough to reach the breakpoint when a breakpoint is not

intended. Increase the size of the breakpoint window to compensate for system jitter.

Relative Position Breakpoints Algorithm
Figure 12-6 shows the basic algorithm for relative breakpoints.

Figure 12-6. Relative Position Breakpoints Algorithm

Notice that relative breakpoints are not ideal for periodic breakpoints.

There is a latency between the time a breakpoint generates and is

re-enabled. If the axis is moving at sufficient velocity, the breakpoint

re-enables only after the axis has moved slightly. Because a relative

breakpoint generates relative to the position the axis was in when the

breakpoint was enabled, the latency between generation and re-enabling

can cause additional counts between breakpoints.

For example, the actual breakpoints might occur at positions 5,000; 10,003;

15,006; and 20,012. In this example, the axis moves three counts between

a breakpoint and the subsequent re-enabling. For exact distances between

breakpoints at high speeds, use Buffered Breakpoints (NI 7350 only) or

Periodically Occurring Breakpoints.

Enable breakpoint

Wait for breakpoint
to cause a trigger

Configure breakpoint

Configure breakpoint

for relative mode

Load breakpoint position

Relative position where

you want to trigger an event

Chapter 12 Synchronization

NI-Motion User Manual 12-14 ni.com

LabVIEW Code
In this example, a breakpoint generates and then is re-enabled 5,000 counts

from where the move starts. The following code examples are designed to

illustrate the relative breakpoint algorithm only. These examples are not

complete.

Figure 12-7. Relative Position Breakpoint with RTSI Using LabVIEW

C/C++ Code
The following example code is not necessarily complete, and may

not compile if copied exactly. Refer to the examples folder on the

NI-Motion CD for files that are complete and compile as is.

// Main Function

void main(void)

{

u8 boardID;// Board identification number

u8 axis;// Axis number

u16 csr = 0;// Communication status register

u16 axisStatus;// Axis status

i32 breakpointPosition = 5000;

//Variables for modal error handling

u16 commandID;// The commandID of the function

u16 resourceID;// The resource ID

i32 errorCode;// Error code

///////////////////////////////

// Set the board ID

boardID = 1;

1 Select Signal
2 Configure Breakpoint

3 Load Breakpoint Position
4 Enable Breakpoint Output

5 Read per Axis Status
6 Motion Error Handler

5 6321 4

Chapter 12 Synchronization

© National Instruments Corporation 12-15 NI-Motion User Manual

// Set the axis number

axis = NIMC_AXIS1;

///////////////////////////////

// Route breakpoint 1 to RTSI line 1

err = flex_select_signal (boardID, NIMC_RTSI1

/*destination*/, NIMC_BREAKPOINT1/*source*/);

CheckError;

// Configure Breakpoint

err = flex_configure_breakpoint(boardID, axis,

NIMC_RELATIVE_BREAKPOINT, NIMC_SET_BREAKPOINT, 0);

CheckError;

// Load breakpoint position, which is position where

breakpoint should occur

err = flex_load_pos_bp(boardID, axis,

breakpointPosition, 0xFF);

CheckError;

for(;;){

// Enable the breakpoint on axis 1

err = flex_enable_breakpoint(boardID, axis,

NIMC_TRUE);

CheckError;

do

{

// Check the breakpoint status

err = flex_read_axis_status_rtn(boardID,

axis, &axisStatus);

CheckError;

// Read the communication status register

and check the modal //errors

err = flex_read_csr_rtn(boardID, &csr);

CheckError;

// Check for modal errors

if (csr & NIMC_MODAL_ERROR_MSG)

{

err = csr & NIMC_MODAL_ERROR_MSG;

CheckError;

}

Sleep (10); // Check every 10 ms

}while (!(axisStatus & NIMC_POS_BREAKPOINT_BIT));

// Wait for breakpoint to be triggered

}

Chapter 12 Synchronization

NI-Motion User Manual 12-16 ni.com

return;// Exit the Application

///

// Error Handling

//

nimcHandleError; //NIMCCATCHTHIS:

// Check to see if there were any Modal Errors

if (csr & NIMC_MODAL_ERROR_MSG){

do{

//Get the command ID, resource ID, and the

error code of the //modal error from the

error stack on the device

flex_read_error_msg_rtn(boardID,&commandI

D,&resourceID, &errorCode);

nimcDisplayError(errorCode,commandID,res

ourceID);

//Read the communication status register

flex_read_csr_rtn(boardID,&csr);

}while(csr & NIMC_MODAL_ERROR_MSG);

}

else// Display regular error

nimcDisplayError(err,0,0);

return;// Exit the Application

}

Periodically Occurring Breakpoints

NI-Motion allows you to program the motion controller to generate

multiple breakpoints at fixed and exact intervals, regardless of the direction

of travel or velocity.

There are two ways to create periodically occurring breakpoints using

NI-Motion functions, depending on which motion controller you have.

For the NI 7350 controller, use periodic breakpoints. For NI 7330, NI 7340,

and NI 7390 controllers, use modulo breakpoints.

Note All breakpoints can be affected by jitter in the motion control system. For example,

if you have a very small breakpoint window, the jitter in the motion control system could

cause the position to change enough to reach the breakpoint when a breakpoint is not

intended. Increase the size of the breakpoint window to compensate for system jitter.

Chapter 12 Synchronization

© National Instruments Corporation 12-17 NI-Motion User Manual

Periodic Breakpoints (NI 7350 only)
Periodic breakpoints require that you specify an initial breakpoint and an

ongoing repeat period. When enabled, the periodic breakpoints begin when

the initial breakpoint occurs. From then on, a new breakpoint occurs each

time the axis moves a distance equal to the repeat period, with no

re-enabling required.

For example, if an axis is enabled at position zero, the initial breakpoint is

set for position 100, and the breakpoint period is set at 1,000, then the axis

behaves as shown in Figure 12-8.

Figure 12-8. Periodic Breakpoint Every 1,000 Counts/Steps

Periodic Breakpoint Algorithm
Figure 12-9 shows the basic algorithm for periodic breakpoints.

Figure 12-9. Periodic Breakpoint Algorithm

1100 2100100 3100

= Breakpoint

= Armed Breakpoint

= Current Position

Direction

–900

Configure breakpoint

Enable breakpoint

Load breakpoint bosition

Load the initial breakpoint

Load breakpoint modulus

Load the breakpoint period

Chapter 12 Synchronization

NI-Motion User Manual 12-18 ni.com

LabVIEW Code

Figure 12-10. Periodic Breakpoint Output

C/C++ Code
The following example code is not necessarily complete, and may

not compile if copied exactly. Refer to the examples folder on the

NI-Motion CD for files that are complete and compile as is.

// Main Function

void main(void)

{

u8 boardID; //Board Identification number

u8 axis; // Axis

u16 csr* 0; // Communication Status Register

u8 profileStatus; // Profile Complete Status

u8 bpStatus; // Breakpoint found Status

i32 bpPos; // Breakpoint Position

i32 bpPer; // Breakpoint Period

i32 targetPos; // Target Position

i32 currentPos; // Current Position

u16 axisStatus; // Status of the axis

1 Configure Breakpoint
2 Load Breakpoint Position
3 Load Breakpoint Modulus

4 Enable Breakpoint Output
5 Load Target Position
6 Start Motion

7 Read per Axis Status
8 Motion Error Handler

865 71 2 3 4

Chapter 12 Synchronization

© National Instruments Corporation 12-19 NI-Motion User Manual

//Variables for modal error handling

u16 commandID; // The commandID of the function

u16 resourceID; // The resource ID

i32 errorCode;

//Get the board ID

printf("Enter the Board ID: ");

scanf("%u", &boardID);

//Get the axis number

printf("Enter a axis number: ");

scanf("%u",&axis);

//Get the Target Position

printf("Enter a target position: ");

scanf("%ld",&targetPos);

//Get the Breakpoint Position

printf("Enter a breakpoint position: ");

scanf("%ld",&bpPos);

//Get the Breakpoint Period

printf("Enter a breakpoint period: ");

scanf("%ld",&bpPer);

//Configure the breakpoint to be absolute

err =

flex_configure_breakpoint(boardID,axis,NIMC_PERIODI

C_BREAKPOINT,NIMC_NO_CHANGE,0);

CheckError;

//Load the position to start breakpoints

err = flex_load_pos_bp(boardID,axis,bpPos,0xFF);

CheckError;

//Set the Period

err = flex_load_bp_modulus(boardID,axis,bpPer,0xFF);

CheckError;

//Enable the breakpoint

err =

flex_enable_breakpoint(boardID,axis,NIMC_TRUE);

CheckError;

//Load a target position

err =

flex_load_target_pos(boardID,axis,targetPos,0xFF);

CheckError;

//Start the motion

err = flex_start(boardID,axis,0);

Chapter 12 Synchronization

NI-Motion User Manual 12-20 ni.com

CheckError;

printf("\n");

do

{

//Read the axis status

err =

flex_read_axis_status_rtn(boardID,axis,&axisStat

us);

CheckError;

err =

flex_read_pos_rtn(boardID,axis,¤tPos);

CheckError;

//Check the breakpoint bit

bpStatus = !((axisStatus &

NIMC_POS_BREAKPOINT_BIT)==0);

//Check the profile complete bit

profileStatus = !((axisStatus &

NIMC_PROFILE_COMPLETE_BIT)==0);

printf("Current Position=%10d Breakpoint

Status=%d Profile

Complete=%d\r",currentPos,bpStatus,profileStatus

);

//Check for modal errors

err = flex_read_csr_rtn(boardID,&csr);

CheckError;

//Check the modal errors

if (csr & NIMC_MODAL_ERROR_MSG)

{

flex_stop_motion(boardID,NIMC_VECTOR_SPA

CE1, NIMC_DECEL_STOP, 0);//Stop the

Motion

err = csr & NIMC_MODAL_ERROR_MSG;

CheckError;

}

}while(!profileStatus);

printf("\nFinished.\n");

return; // Exit the Application

///

//////////////////////

// Error Handling

//

Chapter 12 Synchronization

© National Instruments Corporation 12-21 NI-Motion User Manual

nimcHandleError;

// Check to see if there were any Modal Errors

if (csr & NIMC_MODAL_ERROR_MSG){

do{

//Get the command ID, resource and the

error code of the modal

//error from the error stack on the board

flex_read_error_msg_rtn(boardID,&commandI

D,&resourceID,&errorCode);

nimcDisplayError(errorCode,commandID,res

ourceID);

//Read the Communication Status Register

flex_read_csr_rtn(boardID,&csr);

}while(csr & NIMC_MODAL_ERROR_MSG);

}

else // Display regular error

nimcDisplayError(err,0,0);

return; // Exit the Application

}

Modulo Breakpoints (NI 7330, NI 7340 and NI 7390 only)

Modulo breakpoints use a breakpoint window, which defines an area

around the current position. The two breakpoints around the current

position are always enabled.

The breakpoint modulus creates a repeat period for the breakpoints, and the

breakpoint position is the offset from absolute zero.

For example, to create a breakpoint every 500 counts, set the repeat period

to 500 and the breakpoint position to 0. If the breakpoint is enabled when

the axis is at 710, the breakpoints at 1000 and 500 are both armed, as shown

in Figure 12-11.

Chapter 12 Synchronization

NI-Motion User Manual 12-22 ni.com

Figure 12-11. Breakpoint Modulus of 500

As another example, if you set the breakpoint repeat period to be 2000

counts and the offset to be –500, breakpoints occur at –4500, –2500, –500,

1500, 3500. If the breakpoint is enabled when the axis is at 2210, the

breakpoints at 1500 and 3500 are both armed, as shown in Figure 12-12.

Figure 12-12. Breakpoint Modulus of 2000 with an Offset of 500

Each time a breakpoint occurs, re-enable it to load the next breakpoint.

0–500–1000 1000500

= Breakpoint

= Armed Breakpoint

= Current Position

0–2000–4000

–4500 –2500 –500 1500 3500

40002000

= Breakpoint

= Armed Breakpoint

= Current Position

Chapter 12 Synchronization

© National Instruments Corporation 12-23 NI-Motion User Manual

Modulo Breakpoints Algorithm
Figure 12-13 shows the basic algorithm for modulo breakpoints.

Figure 12-13. Modulo Breakpoints Algorithm

Enable breakpoint

Wait for breakpoint
to cause a trigger

Configure breakpoint

Configure breakpoint for modulo mode

Load breakpoint repeat period

Load breakpoint modulus

Load breakpoint position

Position where you want to trigger an

event every time regardless of direction

Chapter 12 Synchronization

NI-Motion User Manual 12-24 ni.com

LabVIEW Code

Figure 12-14. Modulo Breakpoint Using LabVIEW

Figure 12-15. Modulo Breakpoint with RTSI Using LabVIEW

1 Configure Breakpoint
2 Load Breakpoint Modulus

3 Load Breakpoint Position
4 Enable Breakpoint Output

5 Read per Axis Status
6 Motion Error Handler

1 Select Signal
2 Configure Breakpoint
3 Load Breakpoint Modulus

4 Load Breakpoint Position
5 Enable Breakpoint Output

6 Read per Axis Status
7 Motion Error Handler

1 63 54

2

765

2

4

1

3

Chapter 12 Synchronization

© National Instruments Corporation 12-25 NI-Motion User Manual

C/C++ Code
The following example code is not necessarily complete, and may

not compile if copied exactly. Refer to the examples folder on the

NI-Motion CD for files that are complete and compile as is.

// Main Function

void main(void)

{

u8 boardID;// Board identification number

u8 axis; // Axis number

u16 csr = 0;// Communication status register

u16 axisStatus;// Axis status

//Variables for modal error handling

u16 commandID;// The commandID of the function

u16 resourceID;// The resource ID

i32 errorCode;// Error code

///////////////////////////////

// Set the board ID

boardID = 1;

// Set the axis number

axis = NIMC_AXIS1;

////////////////////////////////

// Route breakpoint 1 to RTSI line 1

err = flex_select_signal (boardID, NIMC_RTSI1

/*destination*/, NIMC_BREAKPOINT1/*source*/);

CheckError;

//Configure Breakpoint

err = flex_configure_breakpoint(boardID, axis,

NIMC_MODULO_BREAKPOINT, NIMC_SET_BREAKPOINT,

NIMC_OPERATION_SINGLE);

CheckError;

// Load Breakpoint Modulus - repeat period

err = flex_load_bp_modulus(boardID, axis, 500,

0xFF);

CheckError;

// Load Breakpoint Position - position at which

breakpoint should //occur every modulo

err = flex_load_pos_bp(boardID, axis, 0, 0xFF);

CheckError;

for(;;){

// Enable the breakpoint on axis 1

Chapter 12 Synchronization

NI-Motion User Manual 12-26 ni.com

err = flex_enable_breakpoint(boardID, axis,

NIMC_TRUE);

CheckError;

do

{

// Check the move complete

status/following error/axis off //status

err = flex_read_axis_status_rtn(boardID,

axis, &axisStatus);

CheckError;

// Read the communication status register

and check the modal //errors

err = flex_read_csr_rtn(boardID, &csr);

CheckError;

// Check the modal errors

if (csr & NIMC_MODAL_ERROR_MSG)

{

err = csr & NIMC_MODAL_ERROR_MSG;

CheckError;

}

Sleep (10); //Check every 10 ms

}while (!(axisStatus & NIMC_POS_BREAKPOINT_BIT));

// Wait for breakpoint to be triggered

}

return;// Exit the Application

//////////////////////

// Error Handling

nimcHandleError; //NIMCCATCHTHIS:

// Check to see if there were any Modal Errors

if (csr & NIMC_MODAL_ERROR_MSG){

do{

//Get the command ID, resource ID, and the error

code of the modal //error from the error stack on

the device

flex_read_error_msg_rtn(boardID,&commandID,&reso

urceID, &errorCode);

nimcDisplayError(errorCode,commandID,resourceID)

;

//Read the communication status register

flex_read_csr_rtn(boardID,&csr);

}while(csr & NIMC_MODAL_ERROR_MSG);

else// Display regular error

Chapter 12 Synchronization

© National Instruments Corporation 12-27 NI-Motion User Manual

nimcDisplayError(err,0,0);

return;// Exit the Application

}

High-Speed Capture

Some motion control applications require that you execute a move and

record the locations where external triggers happen. To accomplish this,

you must use the high-speed capture functionality of NI motion controllers.

The implementation for high-speed capture is divided into the buffered and

non-buffered high-speed capture methods.

Buffered High-Speed Capture (NI 7350 only)
Buffered high-speed capture lets you create a buffer that holds captured

positions that you can read asynchronously from the motion controller.

The motion controller automatically arms the next high-speed capture, and

writes the captured high-speed data into its onboard buffer. The enabling of

high-speed capture occurs on a firmware-timed basis, which provides

better frequency than the non-buffered high-speed capture method.

Chapter 12 Synchronization

NI-Motion User Manual 12-28 ni.com

Buffered High-Speed Capture Algorithm

Figure 12-16. Buffered High-Speed Capture Algorithm

Configure a buffer
on the controller

Configure high-speed capture

Enable high-speed capture

Read buffer (optional)

Read captured positions to free

the buffer for more data to be written

Check buffer on the device
(optional)

Check number of captured

positions available to read

Loop checking for captured data array usage

• Set the buffer type to be high-speed
 capture positions
• Total Points is the total number of
 high-speed capture positions you
 want to store
• Buffer Size is the size of the buffer
 you want to create on the board
• Set Old Data Stop to TRUE if you do
 not want old data to be used

Read captured position

Chapter 12 Synchronization

© National Instruments Corporation 12-29 NI-Motion User Manual

LabVIEW Code

Figure 12-17. Buffered High-Speed Capture in LabVIEW

C/C++ Code
The following example code is not necessarily complete, and may

not compile if copied exactly. Refer to the examples folder on the

NI-Motion CD for files that are complete and compile as is.

// Main Function

void main(void)

{

u8 boardID;// Board identification number

u8 axis;// Axis number

u16 csr = 0;// Communication status register

i32 bufferSize = 100;// The size of the buffer to

allocate on the //motion controller

u32 totalPoints = 100;// The number of high speed

capture to //acquire

i32 capturedPositions[100];// Array to store the

captured //positions

f64 actualInterval;// The interval at which the

motion controller can //really contour

u32 backlog;// Indicates the available space for

captured positions

1 Configure Buffer
2 Configure High-Speed Capture
3 Enable High-Speed Capture

4 Check Buffer
5 Read Buffer

6 Clear Buffer
7 Motion Error Handler

4

1

6 7

32

5

Chapter 12 Synchronization

NI-Motion User Manual 12-30 ni.com

u32 pointsDone;// Indicates the number of points that

have been //consumed

u16 bufferState;// Indicates the state of the onboard

buffer

u32 currentDataPoint = 0;// Indicates the next points

to be read //from the buffer

i32* readBuffer = NULL;// The temporary array that is

created to //read captured positions

u32 i;

//Variables for modal error handling

u16 commandID;// The commandID of the function

u16 resourceID;// The resource ID

i32 errorCode;// Error code

///////////////////////////////

// Set the board ID

boardID = 1;

// Set the axis number

axis = NIMC_AXIS1;

////////////////////////////////

// Configure buffer on motion controller memory (RAM)

// Notice requested time interval is hardcoded to 10

milliseconds

err = flex_configure_buffer(boardID, 1 /*buffer

number*/, axis, NIMC_HS_CAPTURE_READBACK,

bufferSize, totalPoints, NIMC_TRUE, 10,

&actualInterval);

CheckError;

// Configure High-Speed Capture

err = flex_configure_hs_capture(boardID, axis,

NIMC_HS_LOW_TO_HIGH_EDGE, NIMC_OPERATION_BUFFERED);

CheckError;

// Enable the high-speed capture on axis

err = flex_enable_hs_capture(boardID, axis,

NIMC_TRUE);

CheckError;

do

{

err = flex_check_buffer_rtn(boardID, 1/*buffer

number*/, &backlog, &bufferState, &pointsDone);

CheckError;

// Check backlog for captured position in buffer

Chapter 12 Synchronization

© National Instruments Corporation 12-31 NI-Motion User Manual

if (backlog > 0)

{

readBuffer =

(i32*)malloc(sizeof(i32)*backlog);

// If captured position available in the

buffer, read the //captured position from

the buffer

err = flex_read_buffer_rtn(boardID,

1/*buffer number*/, backlog, readBuffer);

for(i=0;i<backlog;i++){

if(currentDataPoint > totalPoints)

break;

capturedPositions[currentDa

taPoint] = readBuffer[i];

printf("capture pos %d\n",

capturedPositions[currentDataPoin

t]);

currentDataPoint++;

}

free(readBuffer);

readBuffer = NULL;

CheckError;

}

// Check for axis off status/following error or

any modal //errors; Read the communication status

register and check the //modal errors

err = flex_read_csr_rtn(boardID, &csr);

CheckError;

//Check the modal errors

if (csr & NIMC_MODAL_ERROR_MSG){

err = csr & NIMC_MODAL_ERROR_MSG;

CheckError;

}

Sleep(60);// Check every 60 ms

} while (bufferState != NIMC_BUFFER_DONE);

// Free the buffer allocated on the motion controller

memory

err = flex_clear_buffer(boardID, 1/*buffer

number*/);

Chapter 12 Synchronization

NI-Motion User Manual 12-32 ni.com

CheckError;

return;// Exit the Application

///

//////////////

// Error Handling

//

nimcHandleError; //NIMCCATCHTHIS:

// Check to see if there were any Modal Errors

if (csr & NIMC_MODAL_ERROR_MSG){

do{

//Get the command ID, resource ID, and the

error code of the //modal error from the

error stack on the device

err = flex_read_error_msg_rtn(boardID,

&commandID, &resourceID, &errorCode);

nimcDisplayError(errorCode,commandID,res

ourceID);

//Read the communication status register

err = flex_read_csr_rtn(boardID,&csr);

}while(csr & NIMC_MODAL_ERROR_MSG);

}

else// Display regular error

nimcDisplayError(err,0,0);

return;// Exit the Application

}

Non-Buffered High-Speed Capture
Non-buffered high-speed capture allows you to configure a single

high-speed capture event. For multiple high-speed captures, you must

re-enable the high-speed capture each time it triggers.

Chapter 12 Synchronization

© National Instruments Corporation 12-33 NI-Motion User Manual

High-Speed Capture Algorithm

Figure 12-18. High-Speed Capture Algorithm

Configure high-speed
capture

Read the captured position
(optional)

Enable high-speed
capture

Do the required task
on trigger

This could be a starting move on an

axis or vector space, or just reading

the captured position and recording it

Read the high-speed capture status

Wait for high-speed
capture

Chapter 12 Synchronization

NI-Motion User Manual 12-34 ni.com

LabVIEW Code

Figure 12-19. High-Speed Capture Using LabVIEW

To trigger the high-speed capture from a RTSI line, set the Destination

parameter in Select Signal to High Speed Capture 1, as shown in

Figure 12-20.

1 Configure High-Speed Capture
2 Enable High-Speed Capture

3 Read per Axis Status
4 Read Captured Position

431 2

Chapter 12 Synchronization

© National Instruments Corporation 12-35 NI-Motion User Manual

Figure 12-20. High-Speed Capture with RTSI Using LabVIEW

C/C++ Code
The following section includes C/C++ code for executing a high-speed

capture, as well as using RTSI to execute a high-speed capture. The

following example code is not necessarily complete, and may not compile

if copied exactly. Refer to the examples folder on the NI-Motion CD for

files that are complete and compile as is.

// Main Function

void main(void)

{

u8 boardID; // Board identification number

u8 axis; // Axis number

u16 csr = 0;// Communication status register

u16 axisStatus;// Axis status

i32 capturedPositions[6]; // Array to store the

captured positions

i32 i;

//Variables for modal error handling

u16 commandID;// The commandID of the function

u16 resourceID;// The resource ID

i32 errorCode;// Error code

///////////////////////////////

// Set the board ID

boardID = 1;

// Set the axis number

1 Select Signal
2 Configure High-Speed Capture
3 Enable High-Speed Capture

4 Read per Axis Status
5 Read Captured Position

542 31

Chapter 12 Synchronization

NI-Motion User Manual 12-36 ni.com

axis = NIMC_AXIS1;

////////////////////////////////

// Route HSC 1 to RTSI line 1

err = flex_select_signal (boardID, NIMC_HS_CAPTURE1

/*destination*/, NIMC_RTSI1/*source*/);

CheckError;

//Configure High-Speed Capture

err = flex_configure_hs_capture(boardID, axis,

NIMC_HS_LOW_TO_HIGH_EDGE, 0);

CheckError;

for(i=0; i<6; i++){

// Enable the high speed capture on axis

err = flex_enable_hs_capture(boardID, axis,

NIMC_TRUE);

CheckError;

do

{

// Check the high-speed capture status

err = flex_read_axis_status_rtn(boardID,

axis, &axisStatus);

CheckError;

// Read the communication status register

and check the modal //errors

err = flex_read_csr_rtn(boardID, &csr);

CheckError;

// Check the modal errors

if (csr & NIMC_MODAL_ERROR_MSG)

{

err = csr & NIMC_MODAL_ERROR_MSG;

CheckError;

}

Sleep (10); //Check every 10 ms

}while (!(axisStatus &

NIMC_HIGH_SPEED_CAPTURE_BIT));

// Wait for high-speed capture to be triggered

err = flex_read_cap_pos_rtn(boardID, axis,

&capturedPositions[i]);

CheckError;

}

return;// Exit the Application

//////////////////////

// Error Handling

Chapter 12 Synchronization

© National Instruments Corporation 12-37 NI-Motion User Manual

//

nimcHandleError; //NIMCCATCHTHIS:

// Check to see if there were any Modal Errors

if (csr & NIMC_MODAL_ERROR_MSG){

do{

//Get the command ID, resource ID, and the

error code of the //modal error from the

error stack on the device

flex_read_error_msg_rtn(boardID,&commandI

D,&resourceID, &errorCode);

nimcDisplayError(errorCode,commandID,res

ourceID);

//Read the communication status register

flex_read_csr_rtn(boardID,&csr);

}while(csr & NIMC_MODAL_ERROR_MSG);

}

else //Display regular error

nimcDisplayError(err,0,0);

return; //Exit the Application

}

Real-Time System Integration Bus (RTSI)

RTSI is a dedicated high-speed digital bus designed to facilitate system

integration by low-level, high-speed, real-time communication between

National Instruments devices.

Many applications, such as scanning and alignment, synchronize

measurements made with data and image acquisition devices with position

and velocity. This synchronization requires high speeds with low latencies.

Using RTSI, the NI motion controller can share high-speed digital signals

with NI data acquisition devices, NI image acquisition devices, digital I/O,

or other NI motion devices with no external cabling and without consuming

bandwidth on the host bus. The RTSI bus also has built-in switching, so you

can route signals to and from the bus on-the-fly using software.

In addition to the breakpoint and high speed capture signals, you can route

encoder pulses over the RTSI lines, which serves as a way to trigger an

external device on every change in the encoder channels. You can route

phase A, phase B, and the index pulse of the encoder over RTSI.

Chapter 12 Synchronization

NI-Motion User Manual 12-38 ni.com

You also can create a software trigger by writing to the RTSI lines directly

from software.

You can route position breakpoints and encoder pulses using the RTSI bus

to trigger other devices. You also can configure data and image acquisition

devices to trigger high-speed captures on the NI motion controllers using

the RTSI bus.

RTSI Implementation on the Motion Controller
You can configure an onboard buffer on the motion controller and use the

buffered high-speed capture or breakpoint functionality to synchronize the

motion application with data or image acquisition.

As shown in Figure 12-21, the I/O reaction task automatically re-enables

the breakpoints or high-speed captures on the NI 7350 motion controller.

On NI 7340 motion controllers, you must write an onboard program or use

the host to perform the same re-enabling tasks.

Figure 12-21. RTSI Implementation on the Motion Controller

Write the captured position to the buffer

or read the position from the buffer and enable

the breakpoint. You must create the buffer.

Latches position on

external trigger

(high-speed capture)

Generate trigger (breakpoint)

at a given position

Host can read/update

the buffers asynchronously

*NI 7350 only

To/From

data/image

acquisition device

Chapter 12 Synchronization

© National Instruments Corporation 12-39 NI-Motion User Manual

Position Breakpoints Using RTSI
You can use the Select Signal function to route position breakpoints using

one of the RTSI lines. In this case, the motion controller triggers the

external device at a given position, as shown in Figure 12-22.

Figure 12-22. Position Breakpoint Using RTSI

Encoder Pulses Using RTSI
You may need to trigger the external device to acquire data every encoder

phase or on an encoder index pulse, as shown in Figure 12-23.

Figure 12-23. Encoder Pulses Using RTSI

Software Trigger Using RTSI
You can use the Set I/O Port MOMO function to write directly to the RTSI

lines to trigger other devices, as shown in Figure 12-24.

Figure 12-24. Software Trigger Using RTSI

Source:
Position

breakpoint

Destination:
RTSI line

Source: Encoder
phase A, phase B,

or index

Destination:
RTSI line

Source: RTSI
software port

Destination:
RTSI line

Chapter 12 Synchronization

NI-Motion User Manual 12-40 ni.com

High-Speed Capture Input Using RTSI
When the RTSI line receives the trigger from a data or image acquisition

device, the corresponding high-speed capture occurs, as shown in

Figure 12-25.

Figure 12-25. High-Speed Capture Input Using RTSI

Source: RTSI line
Destination:
High-speed
capture line

© National Instruments Corporation 13-1 NI-Motion User Manual

13
Torque Control

To maintain constant torque or force, the sensor that returns the feedback

to the motion controller must return a value proportional to the torque or

force. The motion controller operates torque-control and position-control

systems in much the same way. The main difference is that the feedback in

position-control systems returns the current position, while the feedback in

torque-control systems returns a voltage proportional to the current force or

torque.

You can implement force feedback on NI motion controllers using either

analog feedback or by monitoring force.

Note The NI SoftMotion Controller does not support analog feedback.

Analog Feedback

In this mode, the torque or force sensor is connected to one of the analog

inputs on the NI motion controller. That analog channel is used as the

feedback sensor.

Figure 13-1. Torque Control Using Analog Feedback Flowchart

Chapter 13 Torque Control

NI-Motion User Manual 13-2 ni.com

Tuning the control loop with a force sensor, which is an analog feedback

sensor, produces the same results as with a position feedback sensor.

Depending upon the resolution you are using, the system may require

higher gains to ensure a faster response. NI motion controllers have 12-bit

or 16-bit analog inputs, whose ranges can be set from 0 V to 5 V, –5 V to

+5 V, 0 V to 10 V, and –10 V to +10 V. When you use counts for entering

the values of position, velocity, acceleration, and deceleration, you do not

need to enter the counts/revolution value for the axis.

Refer to the motion controller user manual for information about analog

input ranges.

Chapter 13 Torque Control

© National Instruments Corporation 13-3 NI-Motion User Manual

Torque Control Using Analog Feedback Algorithm

Figure 13-2. Torque Control Using Analog Feedback Algorithm

Start motion

Start motion
(optional)

Update target position
(optional)

Set operation mode

Loop waiting for move complete

Set to absolute mode

Load move constraints:
max velocity, max

acceleration, and max
deceleration in volts

Map the analog sensor as

the primary feedback for

the axis that is to maintain

a constant torque or force

Load target position in

terms of volts. If you want to

maintain 5 V, load 2047

counts. This applies to a ±5 V range

for ADC Channel & 12-bit ADC

Chapter 13 Torque Control

NI-Motion User Manual 13-4 ni.com

LabVIEW Code

Figure 13-3. Torque Control Using Analog Feedback Using LabVIEW

1 Load Velocity
2 Load Acceleration/Deceleration
3 Load Acceleration/Deceleration

4 Set Operation Mode
5 Load Target Position
6 Start Motion

7 Read per Axis Status
8 Motion Error Handler

86 754321

Chapter 13 Torque Control

© National Instruments Corporation 13-5 NI-Motion User Manual

C/C++ Code
The following example code is not necessarily complete, and may

not compile if copied exactly. Refer to the examples folder on the

NI-Motion CD for files that are complete and compile as is.

// Main Function

void main(void)

{

u8 boardID;// Board identification number

u8 axis;// axis number

u16 csr = 0;// Communication status register

u16 axisStatus;// Axis status

u16 moveComplete;

//Variables for modal error handling

u16 commandID;// The commandID of the function

u16 resourceID;// The resource ID

i32 errorCode;// Error code

///////////////////////////////

// Set the board ID

boardID = 1;

// Set the axis number

axis = NIMC_AXIS1;

////////////////////////////////

//---

//Is is assumed that the axis being moved has an ADC

channel mapped //as its primary feedback. Position is

treated as binary volts. //Hence velocity is loaded

in binary volts/sec and acceleration as //binary

volts/sec^2.

//---

// Set the velocity for the move (in binary

volts/sec)

err = flex_load_velocity(boardID, axis, 10000,

0xFF);

CheckError;

// Set the acceleration for the move (in binary

volts/sec^2)

err = flex_load_acceleration(boardID, axis,

NIMC_ACCELERATION, 100000, 0xFF);

CheckError;

// Set the deceleration for the move (in binary

volts/sec^2)

Chapter 13 Torque Control

NI-Motion User Manual 13-6 ni.com

err = flex_load_acceleration(boardID, axis,

NIMC_DECELERATION, 100000, 0xFF);

CheckError;

// Set the jerk - s-curve time (in sample periods)

err = flex_load_scurve_time(boardID, axis, 1000,

0xFF);

CheckError;

// Set the operation mode

err = flex_set_op_mode (boardID, axis,

NIMC_ABSOLUTE_POSITION);

CheckError;

// Load Position corresponding to the voltage which

you want the //motor to maintain (2047 ~ 5V in this

example)

err = flex_load_target_pos (boardID, axis, 2047,

0xFF);

CheckError;

//Start the move

err = flex_start(boardID, axis, 0);

CheckError;

do

{

axisStatus = 0;

//Check the move complete status

err = flex_check_move_complete_status(boardID,

axis, 0, &moveComplete);

CheckError;

// Check the following error/axis off status for

axis 1

err = flex_read_axis_status_rtn(boardID, axis,

&axisStatus);

CheckError;

//Read the communication status register and

check the modal //errors

err = flex_read_csr_rtn(boardID, &csr);

CheckError;

//Check the modal errors

if (csr & NIMC_MODAL_ERROR_MSG)

{

err = csr & NIMC_MODAL_ERROR_MSG;

CheckError;

Chapter 13 Torque Control

© National Instruments Corporation 13-7 NI-Motion User Manual

}

}while (!moveComplete && !(axisStatus &

NIMC_FOLLOWING_ERROR_BIT) && !(axisStatus &

NIMC_AXIS_OFF_BIT));

//Exit on move complete/following error/axis off

return;// Exit the Application

///

// Error Handling

//

nimcHandleError; //NIMCCATCHTHIS:

// Check to see if there were any Modal Errors

if (csr & NIMC_MODAL_ERROR_MSG){

do{

//Get the command ID, resource ID, and the

error code of the //modal error from the

error stack on the device

flex_read_error_msg_rtn(boardID,&commandI

D,&resourceID, &errorCode);

nimcDisplayError(errorCode,commandID,res

ourceID);

//Read the communication status register

flex_read_csr_rtn(boardID,&csr);

}while(csr & NIMC_MODAL_ERROR_MSG);

}

else// Display regular error

nimcDisplayError(err,0,0);

return;// Exit the Application

}

Chapter 13 Torque Control

NI-Motion User Manual 13-8 ni.com

Monitoring Force

You can use this second force-feedback mode if you have a position sensor

on the motor, in addition to the torque sensor. The control loop on the

motion controller closes the position and velocity loops as usual. Use MAX

to map the encoder as the feedback device for the axis.

Figure 13-4. Torque Control Using Analog Feedback Flowchart

For monitoring force, create an outer loop to monitor the torque sensor, and

move the motor based on the value read from the torque sensor.

Chapter 13 Torque Control

© National Instruments Corporation 13-9 NI-Motion User Manual

Torque Control Using Monitoring Force Algorithm

Figure 13-5. Torque Control Using Monitoring Force Algorithm

Read analog sensor

Check against
required value

Start motion
(optional)

Update target position
(optional)

Loop reading the analog channel that is

connected to the force or torque sensor

Load move constraints:
max velocity, max

acceleration, and max
deceleration

Map the position sensor
(encoder) as the primary

feedback for the axis that is
to maintain a constant

torque or force

Set operation mode
Set to relative mode

Chapter 13 Torque Control

NI-Motion User Manual 13-10 ni.com

LabVIEW Code

Figure 13-6. Torque Control Using Monitoring Force in LabVIEW

1 Load Velocity
2 Load Acceleration/Deceleration
3 Load Acceleration/Deceleration

4 Set Operation Mode
5 Read ADC
6 Load Target Position

7 Start Motion
8 Read per Axis Status
9 Motion Error Handler

1 98765432

Chapter 13 Torque Control

© National Instruments Corporation 13-11 NI-Motion User Manual

C/C++ Code
The following example code is not necessarily complete, and may

not compile if copied exactly. Refer to the examples folder on the

NI-Motion CD for files that are complete and compile as is.

// Main Function

void main(void)

{

u8 boardID;// Board identification number

u8 axis;// Axis number

u16 csr = 0;// Communication status register

u16 axisStatus;// Axis status

i32 constant;// Constant force

i16 adcValue;// ADC value read

//Variables for modal error handling

u16 commandID;// The commandID of the function

u16 resourceID;// The resource ID

i32 errorCode;// Error code

///////////////////////////////

// Set the board ID

boardID = 1;

// Set the axis number

axis = NIMC_AXIS1;

// constant force needed to be maintained

// corresponds to 5V for a +/- 5V ADC settings

constant = 2047;

////////////////////////////////

//---

//Is is assumed that the axis being moved has an

encoder mapped as //its primary feedback

//---

// Set the velocity for the move (in counts/sec)

err = flex_load_velocity(boardID, axis, 10000,

0xFF);

CheckError;

// Set the acceleration for the move (in

counts/sec^2)

err = flex_load_acceleration(boardID, axis,

NIMC_ACCELERATION, 100000, 0xFF);

CheckError;

// Set the deceleration for the move (in

counts/sec^2)

Chapter 13 Torque Control

NI-Motion User Manual 13-12 ni.com

err = flex_load_acceleration(boardID, axis,

NIMC_DECELERATION, 100000, 0xFF);

CheckError;

// Set the jerk (s-curve value) for the move (in

sample periods)

err = flex_load_scurve_time(boardID, axis, 100,

0xFF);

CheckError;

// Set the operation mode to velocity

err = flex_set_op_mode(boardID, axis,

NIMC_RELATIVE_POSITION);

CheckError;

do

{

// Read the ADC channel number 1 and calculate the

position to //be updated

err = flex_read_adc16_rtn(boardID, NIMC_ADC1,

&adcValue);

CheckError;

if((constant - adcValue) != 0){

err = flex_load_target_pos(boardID, axis,

(constant - adcValue), 0xFF);

CheckError;

// Move based on delta force

err = flex_start(boardID, axis, 0);

CheckError;

}

// Check the move complete status/following

error/axis off //status

err = flex_read_axis_status_rtn(boardID, axis,

&axisStatus);

CheckError;

// Read the communication status register and

check the modal //errors

err = flex_read_csr_rtn(boardID, &csr);

CheckError;

// Check the modal errors

if (csr & NIMC_MODAL_ERROR_MSG)

{

err = csr & NIMC_MODAL_ERROR_MSG;

CheckError;

Chapter 13 Torque Control

© National Instruments Corporation 13-13 NI-Motion User Manual

}

Sleep (50); //Check every 50 ms

}while (!(axisStatus & NIMC_AXIS_OFF_BIT)); //Exit

on axis off

return;// Exit the Application

///

// Error Handling

//

nimcHandleError; //NIMCCATCHTHIS:

// Check to see if there were any Modal Errors

if (csr & NIMC_MODAL_ERROR_MSG){

do{

//Get the command ID, resource ID, and the

error code of the //modal error from the

error stack on the device

flex_read_error_msg_rtn(boardID,&commandI

D,&resourceID, &errorCode);

nimcDisplayError(errorCode,commandID,res

ourceID);

//Read the communication status register

flex_read_csr_rtn(boardID,&csr);

}while(csr & NIMC_MODAL_ERROR_MSG);

}

else// Display regular error

nimcDisplayError(err,0,0);

return;// Exit the Application

}

Chapter 13 Torque Control

NI-Motion User Manual 13-14 ni.com

Speed Control Based on Analog Value

In a system where a feed roll must run at speeds based on an input voltage,

the algorithm to maintain the speed consists of reading the analog voltage

connected to one of the analog channels on the motion controller, and

updating the speed of the axis based on the value of the voltage read. In this

system, the feedback is a normal position sensor, such as an encoder.

Speed Control Based on Analog Feedback Algorithm

Figure 13-7. Speed Control Based on Analog Feedback Algorithm

The analog input could be connected to a force sensor, which ensures that

the tension of a web being fed is maintained.

Read analog input

Load move constraints

Start motion

Compute new velocity
based on analog input

Load new velocity

Loop waiting for move complete

Set operation mode
Set to velocity mode

Chapter 13 Torque Control

© National Instruments Corporation 13-15 NI-Motion User Manual

LabVIEW Code

Figure 13-8. Speed Control Based on Analog Feedback Using LabVIEW

1 Load Velocity
2 Load Acceleration/Deceleration
3 Load Acceleration/Deceleration
4 Set Operation Mode

5 Start Motion
6 Read ADC
7 Load Velocity

8 Start Motion
9 Read per Axis Status
10 Motion Error Handler

10987653 421

Chapter 13 Torque Control

NI-Motion User Manual 13-16 ni.com

C/C++ Code
The following example code is not necessarily complete, and may

not compile if copied exactly. Refer to the examples folder on the

NI-Motion CD for files that are complete and compile as is.

// Main Function

void main(void)

{

u8 boardID;// Board identification number

u8 axis;// Axis number

u16 csr = 0;// Communication status register

u16 axisStatus;// Axis status

i32 constant;// Constant multiplier

i16 adcValue;// ADC value read

//Variables for modal error handling

u16 commandID;// The commandID of the function

u16 resourceID;// The resource ID

i32 errorCode;// Error code

///////////////////////////////

// Set the board ID

boardID = 1;

// Set the axis number

axis = NIMC_AXIS1;

// constant to multiply the ADC value read to

calculate the //required velocity

constant = 10;

////////////////////////////////

// Set the velocity for the move (in counts/sec)

err = flex_load_velocity(boardID, axis, 10000,

0xFF);

CheckError;

// Set the acceleration for the move (in

counts/sec^2)

err = flex_load_acceleration(boardID, axis,

NIMC_ACCELERATION, 100000, 0xFF);

CheckError;

// Set the deceleration for the move (in

counts/sec^2)

err = flex_load_acceleration(boardID, axis,

NIMC_DECELERATION, 100000, 0xFF);

CheckError;

Chapter 13 Torque Control

© National Instruments Corporation 13-17 NI-Motion User Manual

// Set the jerk (s-curve value) for the move (in

sample periods)

err = flex_load_scurve_time(boardID, axis, 100,

0xFF);

CheckError;

// Set the operation mode to velocity

err = flex_set_op_mode(boardID, axis,

NIMC_VELOCITY);

CheckError;

// Start the move

err = flex_start(boardID, axis, 0);

CheckError;

do

{

// Read the ADC channel number 1 and calculate the

velocity to //be updated

err = flex_read_adc16_rtn(boardID, NIMC_ADC1,

&adcValue);

CheckError;

// Set the velocity based on the ADC value read

err = flex_load_velocity(boardID, axis, (adcValue

* constant), 0xFF);

CheckError;

// Update the velocity

err = flex_start(boardID, axis, 0);

CheckError;

// Check the move complete status/following

error/axis off //status

err = flex_read_axis_status_rtn(boardID, axis,

&axisStatus);

CheckError;

// Read the communication status register and

check the modal //errors

err = flex_read_csr_rtn(boardID, &csr);

CheckError;

// Check the modal errors

if (csr & NIMC_MODAL_ERROR_MSG)

{

err = csr & NIMC_MODAL_ERROR_MSG;

CheckError;

}

Chapter 13 Torque Control

NI-Motion User Manual 13-18 ni.com

Sleep (50); //Check every 50 ms

}while (!(axisStatus & NIMC_AXIS_OFF_BIT)); //Exit

on axis off

return;// Exit the Application

///

// Error Handling

//

nimcHandleError; //NIMCCATCHTHIS:

// Check to see if there were any Modal Errors

if (csr & NIMC_MODAL_ERROR_MSG){

do{

//Get the command ID, resource ID, and the

error code of the //modal error from the

error stack on the device

flex_read_error_msg_rtn(boardID,&commandI

D,&resourceID, &errorCode);

nimcDisplayError(errorCode,commandID,res

ourceID);

//Read the communication status register

flex_read_csr_rtn(boardID,&csr);

}while(csr & NIMC_MODAL_ERROR_MSG);

}

else// Display regular error

nimcDisplayError(err,0,0);

return;// Exit the Application

}

© National Instruments Corporation 14-1 NI-Motion User Manual

14
Onboard Programs

This chapter provides information about how onboard programs work for

the NI SoftMotion Controller and for NI 73xx motion controllers.

Using Onboard Programs with the NI SoftMotion
Controller

To use onboard programs with the NI SoftMotion Controller, use the

LabVIEW Real-Time Module (RT) to target your application to run in the

same environment as the NI SoftMotion Controller.

Because the NI SoftMotion Controller onboard program shares the same

processor and system resources with the NI SoftMotion Controller, ensure

you consider the following points before running your application in

LabVIEW RT:

• Ensure that your top level VI is configured to run at normal, above

normal, or high priority. If you are targeting LabVIEW RT for ETS,

use the timed loop instead of changing the priority of your top level VI.

• Follow the guidelines in the LabVIEW Real-Time Module User

Manual. The guidelines regarding memory allocation and using shared

resources are especially important.

• The jitter of the system increases with the number of devices used in

your RT system. Enable only the devices you need to use for the

current application.

• Because interrupts cause jitter, National Instruments recommends you

configure your application to poll for data periodically rather than wait

on an interrupt.

You can further decrease the jitter under ETS by configuring the

Ethernet mode to be polling. You configure these settings for the RT

controller in Measurement & Automation Explorer (MAX).

Under LabVIEW RT, the NI SoftMotion Controller runs in the

background at time critical priority. The NI SoftMotion Controller is

designed to consume less than 40% of the processor bandwidth. The

rate at which the NI SoftMotion Controller updates its data is typically

1 KHz for Ormec and 100 Hz for CANopen.

Chapter 14 Onboard Programs

NI-Motion User Manual 14-2 ni.com

Using Onboard Programs with NI 73xx
Motion Controllers

You can use the real-time operating system on the NI 73xx motion

controller to run custom programs. This functionality allows you to offload

some motion-specific tasks from the host processor and onto the motion

controller. Using onboard variables, which are global data on the device,

arithmetic and loop operations, and efficient wait functions, you can write

onboard programs to execute parts of the motion application with almost

no host interaction. You can execute up to 10 onboard programs

simultaneously.

Onboard programs have the least priority in a preemptive multitasking

environment running on the embedded microprocessor because the primary

function of the embedded processor is supervisory control and I/O reaction.

Instead, the onboard programs run in a time-sliced manner at the lowest

priority. Each onboard program gets a default time slice of

two milliseconds, after which it relinquishes control of the processor to the

next onboard program or housekeeping task.

The host communication and I/O reaction tasks take higher priority than the

onboard programs and housekeeping tasks, as shown in Figure 14-1.

The onboard programs and housekeeping tasks are time-sliced among

themselves.

For greater control and determinism for the motion control system,

National Instruments offers the LabVIEW Real-Time (RT) module motion

control system, which consists of a PXI chassis, PXI motion controller or

controllers, LabVIEW RT, and NI-Motion driver software.

Chapter 14 Onboard Programs

© National Instruments Corporation 14-3 NI-Motion User Manual

Figure 14-1. Onboard Program Priority

Note If you continuously poll data from the host, the onboard program gets preempted and

has less time to run. To keep this from happening, insert a small delay in the polling loops

on the host. Refer to the Timing Loops section of Chapter 4, What You Need to Know about

Moves, for information about programming delays in the loops.

Writing Onboard Programs

Note This section and the sections that follow it apply only to the NI 73xx motion

controllers.

Almost all NI-Motion functions that execute on the host can run onboard.

You can store up to 32 onboard programs on the motion controller. These

onboard programs remain on the motion controller until you reset it. If you

want the onboard programs to persist through a reset of the motion

controller, save them to FLASH, as shown in Figure 14-2.

I/O reaction

Host communications

pre-emptive tasks

2 ms time-sliced tasks

Chapter 14 Onboard Programs

NI-Motion User Manual 14-4 ni.com

Figure 14-2. Writing Onboard Programs

Algorithm

Figure 14-3. Basic Onboard Program Algorithm

1 Write the program you want to load onto onboard memory. You can use any NI-Motion functions between
Begin and End Store.

2 Transfer the program to onboard RAM using the host communication handler.
3 Store the program to FLASH memory for more permanent storage (optional).

Start move

Begin store

Put motion controller in store mode

End store

End the store mode

Load move parameters

Load the move type

Chapter 14 Onboard Programs

© National Instruments Corporation 14-5 NI-Motion User Manual

LabVIEW Code

Figure 14-4. Onboard Program in LabVIEW

1 Begin Program Storage
2 Load Target Position
3 Load Velocity in RPM
4 Load Accel/Decel in RPS/s

5 Load Accel/Decel in RPS/s
6 Start Motion
7 End Program Storage

741 2 3 5
6

Chapter 14 Onboard Programs

NI-Motion User Manual 14-6 ni.com

C/C++ Code
The following example code is not necessarily complete, and may

not compile if copied exactly. Refer to the examples folder on the

NI-Motion CD for files that are complete and compile as is.

// Main Function

void main(void)

{

u8 boardID;// Board identification number

u8 axis; // Axis number

u16 csr = 0;// Communication status register

//Variables for modal error handling

u16 commandID;// The commandID of the function

u16 resourceID;// The resource ID

i32 errorCode;// Error code

///////////////////////////////

// Set the board ID

boardID = 1;

// Set the axis number

axis = NIMC_AXIS1;

////////////////////////////////

//--

// Onboard program 1. This onboard program moves axis

one clockwise //5,000 counts (steps). To execute this

onboard program call the //Run Program function.

//--

// Begin onboard program storage - program number 1

err = flex_begin_store(boardID, 1);

CheckError;

// Set the operation mode to relative

err = flex_set_op_mode(boardID, axis,

NIMC_RELATIVE_POSITION);

CheckError;

// Load Target Position to move clockwise 5,000

counts(steps)

err = flex_load_target_pos(boardID, axis, 5000,

0xFF);

CheckError;

// Load Velocity in RPM

err = flex_load_rpm(boardID, axis, 100.00, 0xFF);

CheckError;

// Load Acceleration and Deceleration in RPS/sec

Chapter 14 Onboard Programs

© National Instruments Corporation 14-7 NI-Motion User Manual

err = flex_load_rpsps(boardID, axis, NIMC_BOTH,

50.00, 0xFF);

CheckError;

// Start the move

err = flex_start(boardID, axis, 0);

CheckError;

// End Program Storage

err = flex_end_store(boardID, 1);

CheckError;

return;// Exit the Application

//

// Error Handling

//

nimcHandleError; //NIMCCATCHTHIS:

// Check to see if there were any Modal Errors

if (csr & NIMC_MODAL_ERROR_MSG){

do{

//Get the command ID, resource ID, and the

error code of the //modal error from the

error stack on the device

flex_read_error_msg_rtn(boardID,&commandI

D,&resourceID, &errorCode);

nimcDisplayError(errorCode,commandID,res

ourceID);

//Read the communication status register

flex_read_csr_rtn(boardID,&csr);

}while(csr & NIMC_MODAL_ERROR_MSG);

}

else// Display regular error

nimcDisplayError(err,0,0);

return;// Exit the Application

}

Chapter 14 Onboard Programs

NI-Motion User Manual 14-8 ni.com

Running, Stopping, and Pausing Onboard Programs

Use the Run Program, Stop Program, and Pause/Resume Program

functions to run, stop, and pause an onboard program that resides in the

onboard memory of a motion controller.

Running an Onboard Program
Run Program executes previously stored programs from RAM or FLASH.

Typically, you must call the Run Program function from the host, because

it is not possible for an onboard program to run itself. However, it is

possible to configure the motion controller to automatically run an onboard

program upon powering up the motion control system. You also can call an

onboard program from another onboard program using the Run Program

function.

Note Recursively calling an onboard program generates an error.

Stopping an Onboard Program
Stop Program ends the execution of an onboard program that is currently

running.

Stopping an onboard program using the Stop Program function completely

ends execution. It is not possible to resume execution of the stopped

onboard program, but you can re-run the program from the beginning.

You can stop an onboard program with a Stop Program function call from

the host or from another onboard program.

Note It is not possible for an onboard program to stop itself.

Tip Stopping an onboard program is different from stopping the motion of the axis or

axes. When you stop an onboard program, any moves that have started continue to run. You

must separately call the Stop Motion function to stop the motion of the axis or axes.

Pausing/Resuming an Onboard Program

The Pause/Resume Program function suspends execution of a running

onboard program, or resumes execution of a previously paused onboard

program.

You can pause an onboard program with a function call from the host, from

the onboard program itself, or from another running onboard program.

Chapter 14 Onboard Programs

© National Instruments Corporation 14-9 NI-Motion User Manual

You can resume an onboard program with a function call from the host or

from another running onboard program.

Note It is not possible for an onboard program to resume itself.

Tip Similarly to the Stop Program function, Pause/Resume Program has no effect on

moves that have started.

Automatic Pausing
Any run-time error that occurs during execution automatically pauses the

onboard program.

An onboard program also pauses automatically when it executes the Start

function or the Blend Motion function on an axis that has been stopped by

the host, or when an axis is stopped due to a limit, home, software limit, or

following error condition.

Single-Stepping Using Pause
You can use the Pause/Resume Program function to effectively single-step

through an onboard program. To single-step, add a Pause/Resume Program

call after each function, and then resume the onboard program from the

host.

Conditionally Executing Onboard Programs

You can set conditions that affect the execution of the onboard programs.

For example, you may want the onboard program to wait until a specific

event occurs, and then continue executing.

The Wait on Condition function allows you to create onboard programs that

wait for events, such as move complete and blend complete. These onboard

programs can send functions to start moves and wait for moves to complete.

The onboard program uses almost no processor time while waiting for an

event such as move complete. When the move is complete, the trajectory

generator enables the I/O reaction task, which causes the onboard program

to continue executing the next function in its sequence, as shown in

Figure 14-5.

Chapter 14 Onboard Programs

NI-Motion User Manual 14-10 ni.com

Figure 14-5. Executing Onboard Programs

generator

reaction
task

communication
task

Run program

Onboard programs

Chapter 14 Onboard Programs

© National Instruments Corporation 14-11 NI-Motion User Manual

Onboard Program Conditional Execution Algorithm

Figure 14-6. Onboard Program Conditional Execution Algorithm

Start move

Wait for move event signal

Begin store

Put motion controller in store mode

End store

End the store mode

Load move parameters

Load the move type

Chapter 14 Onboard Programs

NI-Motion User Manual 14-12 ni.com

LabVIEW Code

Figure 14-7. Onboard Program Waiting for an I/O Line to Go Active

C/C++ Code
The following example code is not necessarily complete, and may

not compile if copied exactly. Refer to the examples folder on the

NI-Motion CD for files that are complete and compile as is.

// Main Function

void main(void)

{

u8 boardID;// Board identification number

u8 axis;// Axis number

u16 csr = 0;// Communication status register

//Variables for modal error handling

u16 commandID;// The commandID of the function

u16 resourceID;// The resource ID

i32 errorCode;// Error code

///////////////////////////////

1 Begin Program
Storage

2 Set Operation Mode
3 Load Velocity in RPM

4 Load Target Position
5 Select MOMO
6 Wait on Condition

7 Start Motion
8 End Program Storage
9 Motion Error Handler

61

2

4 5

987

3

Chapter 14 Onboard Programs

© National Instruments Corporation 14-13 NI-Motion User Manual

// Set the board ID

boardID = 1;

// Set the axis number

axis = NIMC_AXIS1;

////////////////////////////////

// Begin onboard program storage - program number 1

err = flex_begin_store(boardID, 1);

CheckError;

// Load Velocity in RPM

err = flex_load_rpm(boardID, axis, 100.00, 0xFF);

CheckError;

// Load Acceleration and Deceleration in RPS/sec

err = flex_load_rpsps(boardID, axis, NIMC_BOTH,

50.00, 0xFF);

CheckError;

// Set the operation mode to relative

err = flex_set_op_mode(boardID, axis,

NIMC_RELATIVE_POSITION);

CheckError;

// Load Target Position to move relative 5,000

counts(steps)

err = flex_load_target_pos(boardID, axis, 5000,

0xFF);

CheckError;

// Wait for line 1 on port 1 to go active to finish

executing

err = flex_wait_on_event(boardID, NIMC_IO_PORT1,

NIMC_WAIT, NIMC_CONDITION_IO_PORT_MATCH,

(u8)(1<<1)/*Indicates line 1*/, 0, NIMC_MATCH_ALL,

10000 /*time out*/, 0);

CheckError;

// Start the move

err = flex_start(boardID, axis, 0);

CheckError;

// Wait for move to complete

err = flex_wait_on_event(boardID, 0, NIMC_WAIT,

NIMC_CONDITION_MOVE_COMPLETE, (u8)(1<<axis), 0,

NIMC_MATCH_ALL, 1000 /*time out*/, 0);

CheckError;

// End Program Storage

err = flex_end_store(boardID, 1);

Chapter 14 Onboard Programs

NI-Motion User Manual 14-14 ni.com

CheckError;

return;// Exit the Application

//////////////////////

// Error Handling

nimcHandleError; //NIMCCATCHTHIS:

// Check to see if there were any Modal Errors

if (csr & NIMC_MODAL_ERROR_MSG){

do{

//Get the command ID, resource ID, and the

error code of the //modal error from the

error stack on the device

flex_read_error_msg_rtn(boardID,&commandI

D,&resourceID, &errorCode);

nimcDisplayError(errorCode,commandID,res

ourceID);

//Read the communication status register

flex_read_csr_rtn(boardID,&csr);

}while(csr & NIMC_MODAL_ERROR_MSG);

}

else// Display regular error

nimcDisplayError(err,0,0);

return;// Exit the Application

}

Using Onboard Memory and Data

NI motion controllers allow you to access the onboard RAM and FLASH

to create data buffers and use some general-purpose onboard variables for

data manipulation. You can use this memory to update data that is loaded

by functions that are executing in an onboard program. You also can

synchronize execution or data between the host computer and the motion

controller. For example, you may want to update the velocity of an axis

based on the analog voltage read from an ADC channel. This memory is

statically allocated.

Chapter 14 Onboard Programs

© National Instruments Corporation 14-15 NI-Motion User Manual

Algorithm

Figure 14-8. Updating Velocity Based on ADC Channel Algorithm

Before you execute this program, set the operation mode of the axis to

velocity mode.

Set a label

Start move

Jump to label

Begin store

Put motion controller in store mode

End store

End the store mode

Read ADC

Read the analog channel, and

save value to an onboard variable

Jump to label
Jump to label if no update

required. Else continue.

Load velocity

Update the loaded velocity

with the new velocity

Get velocity value

Multiply ADC value by a

scale factor to calculate velocity

Check if value needs
to be updated

Update if last value is

different from current value

No

Yes

Chapter 14 Onboard Programs

NI-Motion User Manual 14-16 ni.com

LabVIEW Code

Figure 14-9. Updating Velocity Based on ADC Channel in LabVIEW

1 Load Constant to Variable
2 Load Constant to Variable
3 Begin Program Storage
4 Set Operation Mode
5 Insert Program Label

6 Read ADC
7 Multiply Variables
8 Subtract Variables
9 Jump to Label on Condition
10 Load Velocity

11 Start Motion
12 Read Variable
13 Jump to Label on Condition
14 End Program Storage
15 Motion Error Handler

14

9 10 11

151 2 3 4 5 6

7 12 13

8

Chapter 14 Onboard Programs

© National Instruments Corporation 14-17 NI-Motion User Manual

C/C++ Code
The following example code is not necessarily complete, and may

not compile if copied exactly. Refer to the examples folder on the

NI-Motion CD for files that are complete and compile as is.

// Main Function

void main(void)

{

u8 boardID;// Board identification number

u8 axis; // Axis number

u16 csr = 0;// Communication status register

i32 constant;// Constant multiplier

//Variables for modal error handling

u16 commandID;// The commandID of the function

u16 resourceID;// The resource ID

i32 errorCode;// Error code

///////////////////////////////

// Set the board ID

boardID = 1;

// Set the axis number

axis = NIMC_AXIS1;

// constant to multiply the ADC value read to

calculate the //required velocity

constant = 10;

// Initialize onboard variable 4 to 0

err = flex_load_var(boardID, 0, 4);

CheckError;

// Initialize onboard variable 1 to the constant

multiplier

err = flex_load_var(boardID, constant, 1);

CheckError;

// Begin onboard program storage - program number 1

err = flex_begin_store(boardID, 1);

// Set the operation mode to velocity

err = flex_set_op_mode(boardID, axis,

NIMC_VELOCITY);

CheckError;

// Insert Label number 1

err = flex_insert_program_label(boardID, 1);

CheckError;

// Read ADC channel and store ADC value in variable 2

Chapter 14 Onboard Programs

NI-Motion User Manual 14-18 ni.com

err = flex_read_adc16(boardID, NIMC_ADC1, 2);

CheckError;

//Multiply variable 2 (ADC value) with variable 1

(constant)

// Save the result in variable 3

err = flex_mult_vars(boardID, 1, 2, 3);

CheckError;

//Subtract value in variable 3 from variable 4. The

result is //unimportant, you just want to set the

condition on board.

err = flex_sub_vars(boardID, 3, 4, 0);

CheckError;

// Jump to label 1 as the subtraction above set the

condition to //"equal to zero", which implies that

the values in variable 3 and //4 are the same

err = flex_jump_on_event (boardID, 0,

NIMC_CONDITION_EQUAL, 0, 0, NIMC_MATCH_ALL, 1/*label

number*/);

// Set the velocity for the move (in counts/sec) by

loading the //value from variable 3, which is (adc

value * constant)

err = flex_load_velocity(boardID, axis, 0, 3);

CheckError;

// Start the move to update the velocity

err = flex_start(boardID, axis, 0);

CheckError;

// Save the value in variable 3 to variable 4 for use

in next cycle

err = flex_read_var(boardID, 3, 4);

CheckError;

// Jump back to label 1 unconditionally

err = flex_jump_on_event (boardID, 0,

NIMC_CONDITION_TRUE, 0, 0, NIMC_MATCH_ALL, 1/*label

number*/);

CheckError;

// End Program Storage

err = flex_end_store(boardID, 1);

// To execute this program use the Run Program

function

return;// Exit the Application

Chapter 14 Onboard Programs

© National Instruments Corporation 14-19 NI-Motion User Manual

//////////////////////

// Error Handling

//

nimcHandleError; //NIMCCATCHTHIS:

// Check to see if there were any Modal Errors

if (csr & NIMC_MODAL_ERROR_MSG){

do{

//Get the command ID, resource ID, and the

error code of the //modal error from the

error stack on the device

flex_read_error_msg_rtn(boardID,&commandI

D,&resourceID, &errorCode);

nimcDisplayError(errorCode,commandID,res

ourceID);

//Read the communication status register

flex_read_csr_rtn(boardID,&csr);

}while(csr & NIMC_MODAL_ERROR_MSG);

}

else// Display regular error

nimcDisplayError(err,0,0);

return;// Exit the Application

}

Branching Onboard Programs

To create loops, or conditional if statements, insert labels in the program

you are storing and use the Jump to Label function to jump to that label

based on the condition.

Chapter 14 Onboard Programs

NI-Motion User Manual 14-20 ni.com

Onboard Program Algorithm
Figure 14-10 shows an onboard program waiting for an I/O line to go active

before starting a move.

Figure 14-10. Using Labels with Onboard Programs

Start Move

Set a Label

Wait for Move Event Signal

Jump to Label

Begin Store

Put Controller in Store Mode

End Store

End the Store Mode

Load Move Parameters

Load your Move Type

Chapter 14 Onboard Programs

© National Instruments Corporation 14-21 NI-Motion User Manual

LabVIEW Code

Figure 14-11. Continuously Executing Onboard Program in LabVIEW

1 Begin Program Storage
2 Set Operation Mode
3 Load Velocity in RPM
4 Insert Program Label
5 Load Target Position

6 Select MOMO
7 Wait on Condition
8 Start Motion
9 Select MOMO

10 Wait on Condition
11 Jump to Label on Condition
12 End Program Storage
13 Motion Error Handler

2 5 61 4

11 138 107 12

93

Chapter 14 Onboard Programs

NI-Motion User Manual 14-22 ni.com

C/C++ Code
The following example code is not necessarily complete, and may

not compile if copied exactly. Refer to the examples folder on the

NI-Motion CD for files that are complete and compile as is.

// Main Function

void main(void)

{

u8 boardID;// Board identification number

u8 axis; // Axis number

u16 csr = 0;// Communication status register

//Variables for modal error handling

u16 commandID;// The commandID of the function

u16 resourceID;// The resource ID

i32 errorCode;// Error code

///////////////////////////////

// Set the board ID

boardID = 1;

// Set the axis number

axis = NIMC_AXIS1;

////////////////////////////////

// Begin onboard program storage - program number 1

err = flex_begin_store(boardID, 1);

CheckError;

// Load Velocity in RPM

err = flex_load_rpm(boardID, axis, 100.00, 0xFF);

CheckError;

// Load Acceleration and Deceleration in RPS/sec

err = flex_load_rpsps(boardID, axis, NIMC_BOTH,

50.00, 0xFF);

CheckError;

// Set the operation mode to relative

err = flex_set_op_mode(boardID, axis,

NIMC_RELATIVE_POSITION);

CheckError;

// Insert Label number 1

err = flex_insert_program_label(boardID, 1);

CheckError;

// Load Target Position to move relative 5000

counts(steps)

Chapter 14 Onboard Programs

© National Instruments Corporation 14-23 NI-Motion User Manual

err = flex_load_target_pos(boardID, axis, 5000,

0xFF);

CheckError;

// Wait for line 1 on port 1 to go active to finish

executing

err = flex_wait_on_event(boardID, NIMC_IO_PORT1,

NIMC_WAIT, NIMC_CONDITION_IO_PORT_MATCH,

(u8)(1<<1)/*Indicates line 1*/, 0, NIMC_MATCH_ALL,

10000 /*time out*/, 0);

CheckError;

// Start the move

err = flex_start(boardID, axis, 0);

CheckError;

// Wait for move to complete

err = flex_wait_on_event(boardID, 0, NIMC_WAIT,

NIMC_CONDITION_MOVE_COMPLETE, (u8)(1<<axis), 0,

NIMC_MATCH_ALL, 1000 /*time out*/, 0);

CheckError;

// Jump unconditionally to label 1 and check IO line

again

err = flex_jump_on_event (boardID, 0,

NIMC_CONDITION_TRUE, 0, 0, NIMC_MATCH_ALL, 1/*label

number*/);

CheckError;

// End Program Storage

err = flex_end_store(boardID, 1);

CheckError;

return;// Exit the Application

//////////////////////

// Error Handling

nimcHandleError; //NIMCCATCHTHIS:

// Check to see if there were any Modal Errors

if (csr & NIMC_MODAL_ERROR_MSG){

do{

//Get the command ID, resource ID, and the

error code of the //modal error from the

error stack on the device

flex_read_error_msg_rtn(boardID,&commandI

D,&resourceID, &errorCode);

nimcDisplayError(errorCode,commandID,res

ourceID);

Chapter 14 Onboard Programs

NI-Motion User Manual 14-24 ni.com

//Read the communication status register

flex_read_csr_rtn(boardID,&csr);

}while(csr & NIMC_MODAL_ERROR_MSG);

}

else// Display regular error

nimcDisplayError(err,0,0);

return;// Exit the Application

}

Math Operations

NI-Motion always performs math operations on values stored in onboard

variables, and all math operations set a global condition that the Jump to

Label function uses to determine if the operation jumps to a particular label

in the onboard program.

To load the onboard variables, use the Load Constant function or point the

return vector in the Read functions to the onboard variable where you want

the data to be saved. In the previous example, the ADC channel is read to

onboard variable 2. This value is then multiplied with a scale factor loaded

into variable 1 using the Load Constant function.

You can perform Add, Multiply, Subtract, Divide, AND, OR, XOR, NOT,

and logical shift math operations. The condition code always reflects the

last math operation performed. Less Than implies less than zero, Equal

implies equal to zero, and so on.

Indirect Variables

If you make the read or load functions point to variables 0x81 to 0xF8, the

functions use the value loaded in variables 1 to 0x78 and interpret them as

the address where the value is read or loaded. This creates two levels of

indirection.

Making the return vector of the Read Position function point to 0x81 causes

the position to end up in the address contained in onboard variable 1, as

shown in Figure 14-12.

Chapter 14 Onboard Programs

© National Instruments Corporation 14-25 NI-Motion User Manual

Figure 14-12. Reading an Indirect Variable

Using indirect variables can be very useful in looping in onboard programs,

as well as dynamically changing the input values to functions.

Onboard Buffers

You can use the memory on the NI motion controllers to create

general-purpose buffers to read and write data, as shown in Figure 14-13.

Figure 14-13. Onboard Buffer Data Flow

buffer in

Copies captured
position to buffer

External
trigger

Latches position
on external trigger

Reads the captured
position

Reads data from the
buffer asynchronously

I/O
reaction

task

Host
application

Chapter 14 Onboard Programs

NI-Motion User Manual 14-26 ni.com

Buffers are created from a dynamic pool of memory, so you must free the

memory when the buffer is not required. This same pool of memory is used

to store onboard programs in RAM. As the number or size of buffers

increases, the available memory for storing onboard programs decreases.

Algorithm
Figure 14-14 shows the algorithm for using onboard buffers to store data.

Figure 14-14. Onboard Buffer Algorithm

Synchronizing Host Applications with
Onboard Programs

The host and the onboard program can write to the move complete status

(MCS) register using the Set Status MOMO function. This function

controls the upper three bits in the MCS register using the

MustOn/MustOff (MOMO) protocol.

Use these bits to synchronize an application running on the host computer

with an onboard program, as shown in Figure 14-15.

Create a buffer
on the motion controller

Configure high-speed
capture

Read buffer (optional)

Read captured positions to free the

buffer for more data to be written

Check the buffer on device
(optional)

Check number of captured

positions available to read

Loop checking for captured data array usage

• Set the buffer type to be high-speed
 capture positions
• Total Points is the total number of
 high-speed capture positions you
 want to load
• Buffer Size is the size of the buffer you
 want to create on the device
• Set Old Data Stop to TRUE if you do not
 want old data to be used
• Requested Interval = 0

Read captured position

Chapter 14 Onboard Programs

© National Instruments Corporation 14-27 NI-Motion User Manual

Figure 14-15. Synchronizing Host Applications with Onboard Programs

For example, consider a host application that reads an onboard variable

that has been updated by an onboard program. Use the algorithm in

Figure 14-16 to synchronize the host application with an onboard program,

and read an onboard variable that has been updated by an onboard program.

Figure 14-16. Synchronization Algorithm

I/O register for
sending commands

and reading data

Read move complete
status function execute

from within host application

Poll the MCS waiting for
bit 13 to be set high

Read the onboard variable

Reset bit 13 to 0

Update the variable
on the device

Set Bit 13 on MCS

Continue execution
of the next function

Host Application Onboard Program

Chapter 14 Onboard Programs

NI-Motion User Manual 14-28 ni.com

LabVIEW Code
This example moves axis 1 between target positions of 5000 and –5000.

The host reads the target position only after the move has completed, and

the new target position has been calculated. Figure 14-17 shows the code

that runs as an onboard program.

Figure 14-17. Synchronization Onboard Code in LabVIEW

1 Load Constant to Variable
2 Load Constant to Variable
3 Begin Program Storage
4 Set Operation Mode
5 Load Velocity

6 Insert Program Label
7 Load Target Position
8 Start Motion
9 Select MOMO
10 Wait on Condition

11 Multiply Variables
12 Set User Status MOMO
13 Jump to Label on Condition
14 End Program Storage
15 Motion Error Handler

13 1511 121081 2

3 54 6 7

9

14

Chapter 14 Onboard Programs

© National Instruments Corporation 14-29 NI-Motion User Manual

Figure 14-18 shows the code that runs on the host.

Figure 14-18. Synchronization Host Code in LabVIEW

Note As the host is polling a register on the motion controller, it is not invoking the Host

Communication Task on the real-time operating system on the motion controller.

Therefore, the onboard programs executing are not preempted. In this situation, the

onboard programs run deterministically.

1 Read Move Complete Status 2 Set User Status MOMO 3 Read Variable

2 31

Chapter 14 Onboard Programs

NI-Motion User Manual 14-30 ni.com

C/C++ Code
The following example code is not necessarily complete, and may

not compile if copied exactly. Refer to the examples folder on the

NI-Motion CD for files that are complete and compile as is.

// Main Function

void main(void)

{

u8 boardID;// Board identification number

u8 axis; // Axis number

u16 csr = 0;// Communication status register

i32 targetPosition;

i32 multiplier;

u16 axisStatus;

u16 moveCompleteStatus;

//Variables for modal error handling

u16 commandID;// The commandID of the function

u16 resourceID;// The resource ID

i32 errorCode;// Error code

///////////////////////////////

// Set the board ID

boardID = 1;

// Set the axis number

axis = NIMC_AXIS1;

// Set the move length

targetPosition = 5000;

// Set the multiplier

multiplier = -1;

//--

// Onboard program. This onboard program moves an

axis back and //forth between targetPosition and

-targetPosition. Before //reversing directions it

//indicates to the host computer that it //is about

to do so.

//---

// Initialize onboard variable 2 to the multiplier

used to change //the target position

err = flex_load_var(boardID, multiplier, 2);

CheckError;

// Initialize onboard variable 1 to the target

position

Chapter 14 Onboard Programs

© National Instruments Corporation 14-31 NI-Motion User Manual

err = flex_load_var(boardID, targetPosition, 1);

CheckError;

// Begin onboard program storage - program number 1

err = flex_begin_store(boardID, 1);

// Set the operation mode to absolute position

err = flex_set_op_mode(boardID, axis,

NIMC_ABSOLUTE_POSITION);

CheckError;

// Set the velocity

err = flex_load_velocity(boardID, axis, 10000,

0xFF);

CheckError;

// Insert Label number 1

err = flex_insert_program_label(boardID, 1);

CheckError;

// Load Target Position from onboard variable 1

err = flex_load_target_pos(boardID, axis, 0, 1);

CheckError;

// Start the move

err = flex_start(boardID, axis, 0);

CheckError;

// Wait for move to complete

err = flex_wait_on_event(boardID, 0, NIMC_WAIT,

NIMC_CONDITION_MOVE_COMPLETE,

(u8)(1<<axis)/*Indicates axis to wait on*/, 0,

NIMC_MATCH_ALL, 3000 /*time out*/, 0);

CheckError;

// Multiply variable 1 (target position) with 2

(multiplier)

// Save the result in variable 1 - this calculates

the negative of //last target position

err = flex_mult_vars(boardID, 1, 2, 1);

CheckError;

// Set the 13th bit in the move complete status

register so that //the host knows that the axis is

about to reverse direction

err = flex_set_status_momo(boardID, 0x20, 0);

CheckError;

// Jump unconditionally to load new target position

Chapter 14 Onboard Programs

NI-Motion User Manual 14-32 ni.com

err = flex_jump_on_event (boardID, 0,

NIMC_CONDITION_TRUE, 0, 0, NIMC_MATCH_ALL, 1/*label

number*/);

CheckError;

// End Program Storage

err = flex_end_store(boardID, 1);

CheckError;

//--

// Host program. This programs monitors the 13th bit

in the move //complete status register and records

the position the axis is //going to move to.

//--

do

{

// Check the move complete status/following

error/axis off //status

err = flex_read_axis_status_rtn(boardID, axis,

&axisStatus);

CheckError;

// Read the communication status register and

check the modal //errors

err = flex_read_csr_rtn(boardID, &csr);

CheckError;

// Check the modal errors

if (csr & NIMC_MODAL_ERROR_MSG)

{

err = csr & NIMC_MODAL_ERROR_MSG;

CheckError;

}

// Read the move complete status register and once

the 13th bit //is set; reset the bit and read the

target position.

err = flex_read_mcs_rtn(boardID,

&moveCompleteStatus);

CheckError;

if(moveCompleteStatus & (1<<13)){

i32 currentTargetPosition;

// Reset the 13th bit in the move complete

status register

err = flex_set_status_momo(boardID, 0,

0x20);

CheckError;

Chapter 14 Onboard Programs

© National Instruments Corporation 14-33 NI-Motion User Manual

err = flex_read_var_rtn(boardID, 1,

¤tTargetPosition);

CheckError;

}

Sleep (50); //Check every 50 ms

}while (!(axisStatus & NIMC_FOLLOWING_ERROR_BIT) &&

!(axisStatus & NIMC_AXIS_OFF_BIT));

//Exit on move complete/following error/axis off

return;// Exit the Application

// Error Handling

nimcHandleError; //NIMCCATCHTHIS:

// Check to see if there were any Modal Errors

if (csr & NIMC_MODAL_ERROR_MSG){

do{

//Get the command ID, resource ID, and the

error code of the //modal error from the

error stack on the device

flex_read_error_msg_rtn(boardID,&commandI

D,&resourceID, &errorCode);

nimcDisplayError(errorCode,commandID,res

ourceID);

//Read the communication status register

flex_read_csr_rtn(boardID,&csr);

}while(csr & NIMC_MODAL_ERROR_MSG);

}

else// Display regular error

nimcDisplayError(err,0,0);

return;// Exit the Application

}

Chapter 14 Onboard Programs

NI-Motion User Manual 14-34 ni.com

Onboard Subroutines

You can create subroutines to run as onboard programs and execute them

from within an onboard program.

Algorithm
Figure 14-19 shows an onboard program algorithm that checks the I/O line

state to determine which onboard subroutine to execute.

Figure 14-19. Onboard Subroutine Algorithm

If the I/O line is active, the main onboard program calls an onboard

subroutine that rotates the motor clockwise. If the I/O line is inactive, the

main onboard program calls an onboard subroutine that rotates the motor

to counter clockwise.

Check I/O
line state

Start program 2
Wait for program 2

to complete

Start program 3

Wait for program 3
to complete

Main onboard
program

Chapter 14 Onboard Programs

© National Instruments Corporation 14-35 NI-Motion User Manual

LabVIEW Code
Figure 14-20 shows the main onboard program used to determine the

subroutine call.

Figure 14-20. Onboard Subroutine Call Using LabVIEW

1 Begin Program Storage
2 Insert Program Label
3 Select MOMO
4 Jump to Label on Condition
5 Run Program

6 Wait on Condition
7 Jump to Label on Condition
8 Insert Program Label
9 Run Program

10 Wait on Condition
11 Jump to Label on Condition
12 End Program Storage
13 Motion Error Handler

6 10

1 5

4

9

8

131211
7

2

3

Chapter 14 Onboard Programs

NI-Motion User Manual 14-36 ni.com

Figure 14-21 shows the subroutine that causes the motor to rotate

clockwise.

Figure 14-21. Clockwise Subroutine Using LabVIEW

1 Begin Program Storage
2 Set Operation Mode
3 Load Target Position
4 Load Velocity in RPM

5 Load Accel/Decel in RPS/sec
6 Start Motion
7 Select MOMO

8 Wait on Condition
9 End Program Storage
10 Motion Error Handler

1

5

109

2 3 4 6

8

7

Chapter 14 Onboard Programs

© National Instruments Corporation 14-37 NI-Motion User Manual

Figure 14-22 shows the subroutine that causes the motor to rotate

counter clockwise.

Figure 14-22. Counter Clockwise Subroutine Using LabVIEW

1 Begin Program Storage
2 Set Operation Mode
3 Load Target Position
4 Load Velocity in RPM

5 Load Accel/Decel in RPS/sec
6 Start Motion
7 Select MOMO

8 Wait on Condition
9 End Program Storage
10 Motion Error Handler

1

109

2 3 4 6

75

8

Chapter 14 Onboard Programs

NI-Motion User Manual 14-38 ni.com

C/C++ Code
The following example code is not necessarily complete, and may

not compile if copied exactly. Refer to the examples folder on the

NI-Motion CD for files that are complete and compile as is.

// Main Function

void main(void)

{

u8 boardID;// Board identification number

u8 axis; // Axis number

u16 csr = 0;// Communication status register

//Variables for modal error handling

u16 commandID;// The commandID of the function

u16 resourceID;// The resource ID

i32 errorCode;// Error code

// Set the board ID

boardID = 1;

// Set the axis number

axis = NIMC_AXIS1;

//---

// Onboard program 2. This onboard program moves axis

one clockwise //5,000 counts (steps). This onboard

program is executed by onboard //program one.

//---

// Begin onboard program storage - program number 2

err = flex_begin_store(boardID, 2);

CheckError;

// Set the operation mode to relative

err = flex_set_op_mode(boardID, axis,

NIMC_RELATIVE_POSITION);

CheckError;

// Load Target Position to move clockwise 5,000

counts(steps)

err = flex_load_target_pos(boardID, axis, 5000,

0xFF);

CheckError;

// Load Velocity in RPM

err = flex_load_rpm(boardID, axis, 100.00, 0xFF);

CheckError;

// Load Acceleration and Deceleration in RPS/sec

Chapter 14 Onboard Programs

© National Instruments Corporation 14-39 NI-Motion User Manual

err = flex_load_rpsps(boardID, axis, NIMC_BOTH,

50.00, 0xFF);

CheckError;

// Start the move

err = flex_start(boardID, axis, 0);

CheckError;

// Wait for move to complete

err = flex_wait_on_event(boardID, 0, NIMC_WAIT,

NIMC_CONDITION_MOVE_COMPLETE, 2/*Indicates axis 1*/,

0, NIMC_MATCH_ALL, 1000 /*time out*/, 0);

CheckError;

// End Program Storage

err = flex_end_store(boardID, 2);

CheckError;

//--

// Onboard program 3. This onboard program moves axis

one counter //clockwise 5000 counts (steps). This

onboard program is executed //by onboard program one.

//--

// Begin onboard program storage - program number 3

err = flex_begin_store(boardID, 3);

CheckError;

// Set the operation mode to relative

err = flex_set_op_mode(boardID, axis,

NIMC_RELATIVE_POSITION);

CheckError;

// Load Target Position to move counter clockwise

5000 //counts(steps)

err = flex_load_target_pos(boardID, axis, -5000,

0xFF);

CheckError;

// Load Velocity in RPM

err = flex_load_rpm(boardID, axis, 100.00, 0xFF);

CheckError;

// Load Acceleration and Deceleration in RPS/sec

err = flex_load_rpsps(boardID, axis, NIMC_BOTH,

50.00, 0xFF);

CheckError;

// Start the move

err = flex_start(boardID, axis, 0);

Chapter 14 Onboard Programs

NI-Motion User Manual 14-40 ni.com

CheckError;

// Wait for move to complete

err = flex_wait_on_event(boardID, 0, NIMC_WAIT,

NIMC_CONDITION_MOVE_COMPLETE, 2/*Indicates axis 1*/,

0, NIMC_MATCH_ALL, 1000 /*time out*/, 0);

CheckError;

// End Program Storage

err = flex_end_store(boardID, 3);

CheckError;

//--

// Onboard program 1. The main onboard program

monitors an IO line //and based on state of the IO

line executes onboard program 2 or //onboard program

3.

//--

// Begin onboard program storage - program number 1

err = flex_begin_store(boardID, 1);

CheckError;

// Insert Label number 1

err = flex_insert_program_label(boardID, 1);

CheckError;

// Jump to label 2 if the line 1 on port one is active

err = flex_jump_on_event (boardID, NIMC_IO_PORT1,

NIMC_CONDITION_IO_PORT_MATCH, 2/*Indicates line 1*/,

0, NIMC_MATCH_ALL, 2/*label number*/);

CheckError;

// If the above jump failed, the IO line is not

active; execute //program #3

err = flex_run_prog(boardID, 3);

CheckError;

// Wait for program 3 to finish executing

err = flex_wait_on_event(boardID, 3 /*program #*/,

NIMC_WAIT, NIMC_CONDITION_PROGRAM_COMPLETE, 0, 0,

NIMC_MATCH_ALL, 1000 /*time out*/, 0);

CheckError;

// Jump unconditionally to label 1 and check IO line

again

err = flex_jump_on_event (boardID, 0,

NIMC_CONDITION_TRUE, 0, 0, NIMC_MATCH_ALL, 1/*label

number*/);

CheckError;

Chapter 14 Onboard Programs

© National Instruments Corporation 14-41 NI-Motion User Manual

// Insert Label number 2

err = flex_insert_program_label(boardID, 2);

CheckError;

// Execute program 2

err = flex_run_prog(boardID, 2);

CheckError;

// Wait for program 2 to finish executing

err = flex_wait_on_event(boardID, 2 /*program #*/,

NIMC_WAIT, NIMC_CONDITION_PROGRAM_COMPLETE, 0, 0,

NIMC_MATCH_ALL, 1000 /*time out*/, 0);

CheckError;

// Jump unconditionally to label 1 and check IO line

again

err = flex_jump_on_event (boardID, 0,

NIMC_CONDITION_TRUE, 0, 0, NIMC_MATCH_ALL, 1/*label

number*/);

CheckError;

// End Program Storage

err = flex_end_store(boardID, 1);

CheckError;

return;// Exit the Application

// Error Handling

nimcHandleError; //NIMCCATCHTHIS:

// Check to see if there were any Modal Errors

if (csr & NIMC_MODAL_ERROR_MSG){

do{

//Get the command ID, resource ID, and the

error code of the //modal error from the

error stack on the device

flex_read_error_msg_rtn(boardID,&commandI

D,&resourceID, &errorCode);

nimcDisplayError(errorCode,commandID,res

ourceID);

//Read the communication status register

flex_read_csr_rtn(boardID,&csr);

}while(csr & NIMC_MODAL_ERROR_MSG);

}

else// Display regular error

nimcDisplayError(err,0,0);

return;// Exit the Application

}

Chapter 14 Onboard Programs

NI-Motion User Manual 14-42 ni.com

Automatically Starting Onboard Programs

You can configure the onboard program to start automatically without

calling the Run Program function. The onboard program runs as soon as the

motion controller exits the reset state.

To use this feature, save the onboard program to FLASH, and then call

the Enable Auto Start function. The motion controller checks to see if the

auto-start flag is set when it boots up. If the flag is set, the motion controller

executes the onboard program configured to automatically start. The

auto-start requires no host interaction after it is set up.

Automatically starting the onboard programs is very useful if you need to

execute monitoring tasks to begin as soon as the computer and controller

boot up.

Changing a Time Slice

Use the Load Program Time Slice function to specify the minimum time an

onboard program has to be run per watchdog period, with a total of 20 ms

allowed for all running onboard programs. The default value of 2 ms allows

a maximum of 10 onboard programs running simultaneously with equal

time slices.

You can increase the time slice of the program to change its performance.

The higher you set the time slice, the more the program can execute,

because it commands more processor time.

However, because the processing power is being held longer by the onboard

program, the response times of other onboard programs are slower. Also,

increasing the time slice of a program may reduce host responsiveness and

increase I/O reaction time, even though host communications and I/O

reaction have higher priorities than onboard programs because the motion

controller must guarantee that every program runs for its allotted time per

watchdog period.

© National Instruments Corporation IV-1 NI-Motion User Manual

Part IV

Creating Applications Using NI-Motion

You can combine the moves, input/output, and other functionality

discussed in Part III, Programming with NI-Motion, to create complete

motion control applications.

The following chapters show examples of typical motion control

applications and how they are implemented using NI-Motion.

• Scanning

• Rotating Knife

© National Instruments Corporation 15-1 NI-Motion User Manual

15
Scanning

The goal of the scanning application is to inspect a wafer under a fixed

laser. Multiple detectors collect the scattered laser light and feed the data to

an analysis system that maps any defects.

The wafer rests on an XY stage that moves in two dimensions.

The objective of the scan is to cover as much space on the wafer as possible

in the shortest amount of time. Scanning a greater area increases the

chances of detecting all defects. Shortening the scan time lowers the cycle

time, and increases the speed of the production or testing.

You can perform a scanning application in one of the following three ways:

• Move the stage in a raster by connecting several straight-line move

segments.

• Use blending to perform the scan in a single continuous move.

• Use contouring to create a custom scanning path for the stage.

Connecting Straight-Line Move Segments

You can cover the entire area of the wafer by varying the size of the raster

area. You can increase the resolution of the scanning path by shortening the

distance of the vertical straight-line moves. However, remember that

increasing the resolution also increases the cycle time.

Figure 15-1. Raster Scanning Path

Chapter 15 Scanning

NI-Motion User Manual 15-2 ni.com

Raster Scanning Using Straight Lines Algorithm

Figure 15-2. Raster Scanning Using Straight Lines Algorithm

The raster scanning algorithm for straight-line moves stops the motors after

every segment of the move, so the cycle time is longer than other methods.

Load move constraints

Set operation mode

Create the move segments

Load move segment

Start motion

Configure the
coordinate space

Check for errors

Loop waiting for move complete

C
h

ap
ter 1

5
S

can
n
in

g

©
 N

atio
n

al In
stru

m
en

ts C
o

rp
o

ratio
n

1
5
-3

N
I-M

o
tio

n
 U

ser M
an

u
al

LabVIEW Code

Figure 15-3. Scanning Using LabVIEW

1 Configure Vector Space
2 Load Velocity
3 Load Acceleration/Deceleration
4 Load Acceleration/Deceleration

5 Load S-Curve Time
6 Set Operation Mode
7 Load Vector Space Position
8 Start Motion

9 Check Move Complete Status
10 Read per Axis Status
11 Read per Axis Status
12 Motion Error Handler

2 3 4 8 127

5

1

1110

6 9

Chapter 15 Scanning

NI-Motion User Manual 15-4 ni.com

C/C++ Code
The following example code is not necessarily complete, and may

not compile if copied exactly. Refer to the examples folder on the

NI-Motion CD for files that are complete and compile as is.

define d_numberOfSegments

// Main Function

void main(void){

u8 boardID;// Board identification number

u8 vectorSpace;// Vector space number

u16 csr = 0;// Communication status register

u16 axisStatus;// Axis status

u16 status;

u16 moveComplete;

u32 i;

i32 xPosition[d_numberOfSegments] = {5000, 5000, 0,

0, 5000, 5000, 0, 0, 5000, 5000, 0};

i32 yPosition[d_numberOfSegments] = {0, 1000, 1000,

2000, 2000, 3000, 3000, 4000, 4000, 5000, 5000};

//Variables for modal error handling

u16 commandID;// The commandID of the function

u16 resourceID;// The resource ID

i32 errorCode;// Error code

// Set the board ID

boardID = 1;

// Set the vector space number

vectorSpace = NIMC_VECTOR_SPACE1;

// Configure a 2D vector space comprised of axes 1

and 2

err = flex_config_vect_spc(boardID, vectorSpace,

NIMC_AXIS1, NIMC_AXIS2, NIMC_AXIS3);

CheckError;

// Set the velocity for the move (in counts/sec)

err = flex_load_velocity(boardID, vectorSpace,

10000, 0xFF);

CheckError;

// Set the acceleration for the move (in

counts/sec^2)

err = flex_load_acceleration(boardID, vectorSpace,

NIMC_ACCELERATION, 100000, 0xFF);

CheckError;

Chapter 15 Scanning

© National Instruments Corporation 15-5 NI-Motion User Manual

// Set the deceleration for the move (in

counts/sec^2)

err = flex_load_acceleration(boardID, vectorSpace,

NIMC_DECELERATION, 100000, 0xFF);

CheckError;

// Set the jerk or s-curve in sample periods

err = flex_load_scurve_time(boardID, vectorSpace,

100, 0xFF);

CheckError;

// Set the operation mode to absolute position

err = flex_set_op_mode(boardID, vectorSpace,

NIMC_ABSOLUTE_POSITION);

CheckError;

// Load the straight-line segments one by one

for (i=0; i<d_numberOfSegments; i++){

//Load Target Position

err = flex_load_vs_pos(boardID, vectorSpace,

xPosition[i], yPosition[i], 0, 0xFF);

CheckError;

// Start the move

err = flex_start(boardID, vectorSpace, 0);

CheckError;

do

{

axisStatus = 0;

//Check the move complete status

err = flex_check_move_complete_status

(boardID, vectorSpace, 0, &moveComplete);

CheckError;

// Check the following error/axis off

status for axis 1

err = flex_read_axis_status_rtn(boardID,

NIMC_AXIS1, &status);

CheckError;

axisStatus |= status;

// Check the following error/axis off

status for axis 2

err = flex_read_axis_status_rtn(boardID,

NIMC_AXIS2, &status);

CheckError;

axisStatus |= status;

Chapter 15 Scanning

NI-Motion User Manual 15-6 ni.com

//Read the communication status register

and check the modal //errors

err = flex_read_csr_rtn(boardID, &csr);

CheckError;

//Check the modal errors

if (csr & NIMC_MODAL_ERROR_MSG)

{

err = csr & NIMC_MODAL_ERROR_MSG;

CheckError;

}

Sleep(10); //Check every 10 ms

}while (!moveComplete && !(axisStatus &

NIMC_FOLLOWING_ERROR_BIT) && !(axisStatus &

NIMC_AXIS_OFF_BIT)); //Exit on move

complete/following //error/axis off

if((axisStatus & NIMC_FOLLOWING_ERROR_BIT) ||

(axisStatus & NIMC_AXIS_OFF_BIT)){

break;//Break out of the for loop because

an axis was killed

}

}

return;// Exit the Application

// Error Handling

nimcHandleError; //NIMCCATCHTHIS:

// Check to see if there were any Modal Errors

if (csr & NIMC_MODAL_ERROR_MSG){

do{

//Get the command ID, resource ID, and the

error code of the //modal error from the

error stack on the device

flex_read_error_msg_rtn(boardID,&commandI

D,&resourceID, &errorCode);

nimcDisplayError(errorCode,commandID,res

ourceID);

//Read the communication status register

flex_read_csr_rtn(boardID,&csr);

}while(csr & NIMC_MODAL_ERROR_MSG);

}

else// Display regular error

nimcDisplayError(err,0,0);

return;// Exit the Application

}

Chapter 15 Scanning

© National Instruments Corporation 15-7 NI-Motion User Manual

Blending Straight-Line Move Segments

Blending the straight-line move segments enables continuous motion,

which decreases the cycle time of the scan. The cycle time is much faster

because the motors are not forced to stop after each move segment.

Figure 15-4 shows the path of the blended move segments.

Figure 15-4. Blended Raster Scanning Path

Refer to Chapter 9, Blending Moves, for information about using blending

with NI-Motion.

Chapter 15 Scanning

NI-Motion User Manual 15-8 ni.com

Raster Scanning Using Blended Straight Lines Algorithm

Figure 15-5. Raster Scanning Using Blended Straight Lines Algorithm

Configure the
coordinate space

Load move constraints

Set blend factor

Set operation mode

Create the move segments

Load move segment

Is this the
first move
segment?

Start motion Blend motion

Is this the
last move
segment?

Loop waiting for blend completeLoop waiting for move complete

Check for errors Check for errors

C
h

ap
ter 1

5
S

can
n
in

g

©
 N

atio
n

al In
stru

m
en

ts C
o

rp
o

ratio
n

1
5
-9

N
I-M

o
tio

n
 U

ser M
an

u
al

LabVIEW Code

Figure 15-6. Scanning Using Blending

1 Configure Vector Space
2 Load Velocity
3 Load Acceleration/Deceleration
4 Load Acceleration/Deceleration
5 Load S-Curve Time

6 Load Blend Factor
7 Set Operation Mode
8 Load Vector Space Position
9 Start Motion

10 Check Move Complete Status
11 Read per Axis Status
12 Motion Error Handler
13 Motion Error Handler

2 3 4 5

12 1311

86

1 1097

Chapter 15 Scanning

NI-Motion User Manual 15-10 ni.com

C/C++ Code
The following example code is not necessarily complete, and may

not compile if copied exactly. Refer to the examples folder on the

NI-Motion CD for files that are complete and compile as is.

#define d_numberOfSegments

// Main Function

void main(void)

{

u8 boardID;// Board identification number

u8 vectorSpace;// Vector space number

u16 csr = 0;// Communication status register

u16 axisStatus;// Axis status

u16 status;

u16 complete;//Move or blend complete status

u32 i;

i32 xPosition[d_numberOfSegments] = {5000, 5000, 0,

0, 5000, 5000, 0, 0, 5000, 5000, 0};

i32 yPosition[d_numberOfSegments] = {0, 1000, 1000,

2000, 2000, 3000, 3000, 4000, 4000, 5000, 5000};

//Variables for modal error handling

u16 commandID;// The commandID of the function

u16 resourceID;// The resource ID

i32 errorCode;// Error code

// Set the board ID

boardID = 1;

// Set the vector space number

vectorSpace = NIMC_VECTOR_SPACE1;

// Configure a 2D vector space comprised of axes 1

and 2

err = flex_config_vect_spc(boardID, vectorSpace,

NIMC_AXIS1, NIMC_AXIS2, NIMC_AXIS3);

CheckError;

// Set the velocity for the move (in counts/sec)

err = flex_load_velocity(boardID, vectorSpace,

10000, 0xFF);

CheckError;

// Set the acceleration for the move (in

counts/sec^2)

err = flex_load_acceleration(boardID, vectorSpace,

NIMC_ACCELERATION, 100000, 0xFF);

CheckError;

Chapter 15 Scanning

© National Instruments Corporation 15-11 NI-Motion User Manual

// Set the deceleration for the move (in

counts/sec^2)

err = flex_load_acceleration(boardID, vectorSpace,

NIMC_DECELERATION, 100000, 0xFF);

CheckError;

// Set the jerk or s-curve in sample periods

err = flex_load_scurve_time(boardID, vectorSpace,

100, 0xFF);

CheckError;

// Load the blending factor

err = flex_load_blend_fact(boardID, vectorSpace, -1,

0xFF);

CheckError;

// Set the operation mode to absolute position

err = flex_set_op_mode(boardID, vectorSpace,

NIMC_ABSOLUTE_POSITION);

CheckError;

// Load the straight-line segments one by one

for (i=0; i<d_numberOfSegments; i++){

//Load Target Position

err = flex_load_vs_pos(boardID, vectorSpace,

xPosition[i], yPosition[i], 0, 0xFF);

CheckError;

if(i==0){

// Start the move

err = flex_start(boardID, vectorSpace,

0);

CheckError;

}else{

// Blend the move

err = flex_blend(boardID, vectorSpace,

0);

CheckError;

}

do

{

axisStatus = 0;

if(i==d_numberOfSegments-1){

// Check the move complete status

err =

flex_check_move_complete_status(bo

ardID, vectorSpace, 0, &complete);

Chapter 15 Scanning

NI-Motion User Manual 15-12 ni.com

CheckError;

}else{

// Check the blend complete status

err =

flex_check_blend_complete_status(b

oardID, vectorSpace, 0,

&complete);

CheckError;

}

// Check the following error/axis off

status for axis 1

err = flex_read_axis_status_rtn(boardID,

NIMC_AXIS1, &status);

CheckError;

axisStatus |= status;

// Check the following error/axis off

status for axis 2

err = flex_read_axis_status_rtn(boardID,

NIMC_AXIS2, &status);

CheckError;

axisStatus |= status;

//Read the communication status register

and check the modal //errors

err = flex_read_csr_rtn(boardID, &csr);

CheckError;

//Check the modal errors

if (csr & NIMC_MODAL_ERROR_MSG)

{

err = csr & NIMC_MODAL_ERROR_MSG;

CheckError;

}

Sleep(10); //Check every 10 ms

}while (!complete && !(axisStatus &

NIMC_FOLLOWING_ERROR_BIT) && !(axisStatus &

NIMC_AXIS_OFF_BIT));

//Exit on move complete/following error/axis off

if((axisStatus & NIMC_FOLLOWING_ERROR_BIT) ||

(axisStatus & NIMC_AXIS_OFF_BIT)){

break;//Break out of the for loop because

an axis was killed

}

}

Chapter 15 Scanning

© National Instruments Corporation 15-13 NI-Motion User Manual

return;// Exit the Application

// Error Handling

nimcHandleError; //NIMCCATCHTHIS:

// Check to see if there were any Modal Errors

if (csr & NIMC_MODAL_ERROR_MSG){

do{

//Get the command ID, resource ID, and the

error code of the //modal error from the

error stack on the device

flex_read_error_msg_rtn(boardID,&commandI

D,&resourceID, &errorCode);

nimcDisplayError(errorCode,commandID,res

ourceID);

//Read the communication status register

flex_read_csr_rtn(boardID,&csr);

}while(csr & NIMC_MODAL_ERROR_MSG);

}

else// Display regular error

nimcDisplayError(err,0,0);

return;// Exit the Application

}

User-Defined Scanning Path

You can create a custom path that covers the maximum scan area in the

shortest time using the contoured move feature of the NI motion controller.

This way you bypass the trajectory generator and send exact positions to

the motion controller. The controller then interpolates the distance between

your given points using a cubic spline algorithm. Figure 15-7 shows the

scanning path used in the example that follows the figure.

Chapter 15 Scanning

NI-Motion User Manual 15-14 ni.com

Figure 15-7. User-Defined Scanning Path

Using the contoured move gives you the greatest amount of flexibility

regarding the scan area and speed. However you lose the benefit of the

trajectory generator of the NI motion controller. Refer to Chapter 7,

Contoured Moves, for information about using contoured moves with

NI-Motion.

Chapter 15 Scanning

© National Instruments Corporation 15-15 NI-Motion User Manual

User-Defined Scanning Path Algorithm

Figure 15-8. User-Defined Scanning Path Algorithm

Configure onboard buffer

Write buffer

Start motion

Clear the onboard buffer
Used to store the points

Set operation mode

Loop waiting for move complete

Write the array of points and

number of points to the buffer

Check the onboard buffer
number of points consumed

Write buffer
Write remaining points to the buffer

C
h

ap
ter 1

5
S

can
n

in
g

N
I-M

o
tio

n
 U

ser M
an

u
al

1
5

-1
6

n
i.co

m

LabVIEW Code

Figure 15-9. Scanning Using Contouring

1 Configure Vector Space
2 Set Operation Mode
3 Configure Buffer
4 Write Buffer

5 Start Motion
6 Check Buffer
7 Write Buffer

8 Clear Buffer
9 Set Operation Mode
10 Motion Error Handler

8 10

53

9

4
1

6

72

Chapter 15 Scanning

© National Instruments Corporation 15-17 NI-Motion User Manual

C/C++ Code
The following example code is not necessarily complete, and may

not compile if copied exactly. Refer to the examples folder on the

NI-Motion CD for files that are complete and compile as is.

// Main Function

void main(void)

{

u8 boardID;// Board identification number

u8 vectorSpace;// Vector space number

u16 csr = 0;// Communication status register

u16 axisStatus;// Axis status

u16 status;// Temporary copy of status

u16 moveComplete;// Move complete status

i32 i;

i32 points[1994] = NIMC_SPIRAL_ARRAY;// Array of 2D

points to move

u32 numPoints = 1994;// Total number of points to

contour through

i32 bufferSize = 1000;// The size of the buffer to

allocate on the //motion controller

f64 actualInterval;// The interval at which the

motion controller can //really contour

i32* downloadData = NULL;// The temporary array that

is created to //download the points to the motion

controller

u32 currentDataPoint = 0;// Indicates the next point

in the points //array that is to be downloaded

i32 backlog;// Indicates the available space to

download more //points

u16 bufferState;// Indicates the state of the onboard

buffer

u32 pointsDone;// Indicates the number of points that

have been //consumed

u32 dataCopied = 0;// Keeps track of the points

copied

//Variables for modal error handling

u16 commandID;// The commandID of the function

u16 resourceID;// The resource ID

i32 errorCode;// Error code

// Set the board ID

boardID = 1;

// Set the vector number

Chapter 15 Scanning

NI-Motion User Manual 15-18 ni.com

vectorSpace = NIMC_VECTOR_SPACE1;

// Configure a 2D vector space comprised of axes 1

and 2

err = flex_config_vect_spc(boardID, vectorSpace,

NIMC_AXIS1, NIMC_AXIS2, NIMC_AXIS3);

CheckError;

// Set the operation mode to absolute position

err = flex_set_op_mode(boardID, vectorSpace,

NIMC_ABSOLUTE_CONTOURING);

CheckError;

// Configure buffer on motion controller memory (RAM)

// Notice requested time interval is hardcoded to 10

milliseconds

err = flex_configure_buffer(boardID, 1 /*buffer

number*/, vectorSpace, NIMC_POSITION_DATA,

bufferSize, numPoints, NIMC_TRUE, 10,

&actualInterval);

// Send the first 1000 points of the data

downloadData = malloc(sizeof(i32)*bufferSize);

for(i=0;i<bufferSize;i++){downloadData[i] =

points[i];currentDataPoint++;}

err = flex_write_buffer(boardID, 1/*buffer number*/,

bufferSize, 0, downloadData, 0xFF);

free(downloadData);

downloadData = NULL;

CheckError;

// Start Motion

err = flex_start(boardID, vectorSpace, 0);

CheckError;

for(;;){

axisStatus = 0;

// Check for available space and download

remaining points //every 50 milliseconds

Sleep(50);

// Check to see if there are more points to

download

if(currentDataPoint < numPoints){

err = flex_check_buffer_rtn(boardID,

1/*buffer number*/, &backlog,

&bufferState, &pointsDone);

CheckError;

Chapter 15 Scanning

© National Instruments Corporation 15-19 NI-Motion User Manual

if(backlog >= 300){

downloadData =

malloc(sizeof(i32)*backlog);

dataCopied = 0;

for(i=0;i<backlog;i++){

if(currentDataPoint >

numPoints) break;

downloadData[i] =

points[currentDataPoint];

currentDataPoint++;

dataCopied++;

}

err = flex_write_buffer (boardID, 1

/*buffer number*/, dataCopied, 0,

downloadData, 0xFF);

free(downloadData);

downloadData = NULL;

CheckError;

}

}

// Check the move complete status

err = flex_check_move_complete_status (boardID,

vectorSpace, 0, &moveComplete);

CheckError;

if(moveComplete) break;

// Check for axis off status/following error or

any modal //errors

//Read the communication status register and

check the modal //errors

err = flex_read_csr_rtn(boardID, &csr);

CheckError;

//Check the modal errors

if (csr & NIMC_MODAL_ERROR_MSG){

err = csr & NIMC_MODAL_ERROR_MSG;

CheckError;

}

// Check the motor off status on all the axes

err = flex_read_axis_status_rtn(boardID,

NIMC_AXIS1, &status);

CheckError;

axisStatus |= status;

Chapter 15 Scanning

NI-Motion User Manual 15-20 ni.com

err = flex_read_axis_status_rtn(boardID,

NIMC_AXIS2, &status);

CheckError;

axisStatus |= status;

if((axisStatus & NIMC_FOLLOWING_ERROR_BIT) ||

(axisStatus & NIMC_AXIS_OFF_BIT)){

break;//Break out of the for loop because

an axis was killed

}

}

//Set the mode back to absolute mode to get the motion

controller out of //contouring mode

err = flex_set_op_mode(boardID, vectorSpace,

NIMC_ABSOLUTE_POSITION);

CheckError;

// Free the buffer allocated on the motion controller

memory

err = flex_clear_buffer(boardID, 1/*buffer

number*/);

CheckError;

return;// Exit the Application

// Error Handling

nimcHandleError; //NIMCCATCHTHIS:

// Check to see if there were any Modal Errors

if (csr & NIMC_MODAL_ERROR_MSG){

do{

//Get the command ID, resource ID, and the

error code of the //modal error from the

error stack on the device

flex_read_error_msg_rtn(boardID,&commandI

D,&resourceID, &errorCode);

nimcDisplayError(errorCode,commandID,res

ourceID);

//Read the communication status register

flex_read_csr_rtn(boardID,&csr);

}while(csr & NIMC_MODAL_ERROR_MSG);

}

else// Display regular error

nimcDisplayError(err,0,0);

return;// Exit the Application

}

© National Instruments Corporation 16-1 NI-Motion User Manual

16
Rotating Knife

The purpose of this application is to cut a web with a rotating knife.

The blade must cut precisely between labels on the web. Because the web

material can stretch under certain conditions, it is not enough to cut the web

at constant length, because the length of each label can vary. To accomplish

this task, the web is marked one time per cycle at the required cutting

location. The motion controller reads this mark using a sensor and performs

the necessary correction.

To simplify this example, assume that the length of the cut is equal to the

circumference of the knife. Under ideal conditions, the mark should be read

when the blade is at position A, as shown in Figure 16-1. Therefore, the

motor should move one revolution without any correction before causing

the cut.

Tip Refer to Chapter 10, Electronic Gearing and Camming, for information about

superimposed moves/registration applications.

Solution

The rotary knife is electronically geared to the web with a gear ratio of 1:1,

which ensures that at the time of cut, the speed of the web and the knife is

the same. The speed of each must be the same to make a clean cut without

stretching the web. Also, under ideal conditions, the web and rotating knife

move the exact same distance. For example, the length of the cut might be

one revolution, which is equal to 2,000 counts.

The sensor reading the mark is connected to one of the high-speed capture

lines on the motion controller. Because the elasticity of the web material

results in varying label lengths, the mark can be read before the blade is at

position A or after it is at position A. The application must correct the

position where the blade of the rotary knife should be when the high-speed

capture occurs. This correction must occur after the blade has crossed

position A so that the current cut is not damaged. To accomplish this goal,

mark the correction point to be at position B, as shown in Figure 16-1.

Chapter 16 Rotating Knife

NI-Motion User Manual 16-2 ni.com

Figure 16-1. Rotating Knife

A Synchronization Point B Correction Point

A

B

Chapter 16 Rotating Knife

© National Instruments Corporation 16-3 NI-Motion User Manual

Algorithm

Figure 16-2. Rotating Knife Application Algorithm

Initialize A = 0; B = 500

Load appropriate move
constraints for the slave

Set gear master = encoder 4;
Slave = axis 1

Enable high-speed capture

Set gear ratio to 1:1
Assuming circumference of the

blade = length of cut

Needed for the superimposed

(correction) move

Set operation mode to be
relative to captured position

Also called registration move mode

Wait for high-speed capture;
Read captured position

Set A = A + 2000
B = B + 2000

Correction =
A – captured position

Enable gearing on slave axis
After gearing is enabled, web can

be started, which rotates the knife

Loop waiting for move complete

Load target position =
correction

Start motion on slave
if current position > B

Chapter 16 Rotating Knife

NI-Motion User Manual 16-4 ni.com

LabVIEW Code

Figure 16-3. Rotating Knife Application Using LabVIEW

Figures 16-4 and 16-5 show the remaining cases for the block diagram in

Figure 16-3.

Figure 16-4. Figure 16-3 Sequence Structure 1

1 Configure Gear Master
2 Load Gear Ratio
3 Load Velocity in RPM
4 Load Accel/Decel in RPS/s
5 Set Operation Mode

6 Enable Gearing Single Axis
7 Enable High-Speed Capture
8 Read High-Speed Capture Status
9 Motion Error Handler

1 Read Captured Position 2 Load Target Position

76

1

2

98

3 5

4

1 2

Chapter 16 Rotating Knife

© National Instruments Corporation 16-5 NI-Motion User Manual

Figure 16-5. Figure 16-3 Sequence Structure 2

C/C++ Code
The following example code is not necessarily complete, and may

not compile if copied exactly. Refer to the examples folder on the

NI-Motion CD for files that are complete and compile as is.

// Main Function
void main(void)
{

u8 boardID;// Board identification number
u8 slaveAxis;// Slave axis number
u8 master;// Gear master
u16 csr = 0;// Communication status register
i32 synchronizationPosition = 0; // Synchronization
position

i32 correctionPoint = 500;// Point where the correction
can be //applied
i32 cyclePosition = 2000;// One revolution is 2,000
counts

i32 currentPosition;// The current slave position
i32 capturedPosition;// The position at which the
trigger happens

u16 axisStatus;

//Variables for modal error handling
u16 commandID;// The commandID of the function
u16 resourceID;// The resource ID
i32 errorCode;// Error code

///////////////////////////////
// Set the board ID
boardID = 1;

1 Read Position 2 Start Motion

1 2

Chapter 16 Rotating Knife

NI-Motion User Manual 16-6 ni.com

// Set the axis number
slaveAxis = NIMC_AXIS1;
// Master is encoder 4
master = NIMC_ENCODER4;
////////////////////////////////

//---
// Set up the gearing configuration for the slave axis
//---

// Configure Gear Master
err = flex_config_gear_master(boardID, slaveAxis,
master);
CheckError;

//Load Gear Ratio 1:1
err = flex_load_gear_ratio(boardID, slaveAxis,
NIMC_ABSOLUTE_GEARING, 1/*ratioNumerator*/,
1/*ratioDenominator*/, 0xFF);
CheckError;

//---
// Set up the move parameters for the superimposed move
// to be done on registration
//--

// Set the operation mode to relative
err = flex_set_op_mode(boardID, slaveAxis,
NIMC_RELATIVE_TO_CAPTURE);
CheckError;

// Load Velocity in RPM
err = flex_load_rpm(boardID, slaveAxis, 100.00, 0xFF);
CheckError;

// Load Acceleration and Deceleration in RPS/sec
err = flex_load_rpsps(boardID, slaveAxis, NIMC_BOTH,
50.00, 0xFF);
CheckError;

//---
// Enable Gearing on slave axis
//---
err = flex_enable_gearing_single_axis (boardID,
slaveAxis, NIMC_TRUE);
CheckError;

//---
// Wait for trigger to do the registration move
//---

for(;;){

// Enable high-speed capture for slave axis
err = flex_enable_hs_capture(boardID, slaveAxis,
NIMC_TRUE);
CheckError;
do

Chapter 16 Rotating Knife

© National Instruments Corporation 16-7 NI-Motion User Manual

{
// Check the high-speed capture
status/following error/axis //off status
err = flex_read_axis_status_rtn(boardID,
slaveAxis, &axisStatus);
CheckError;

// Read the communication status register and
check the modal //errors
err = flex_read_csr_rtn(boardID, &csr);
CheckError;

// Check the modal errors
if (csr & NIMC_MODAL_ERROR_MSG)
{

err = csr & NIMC_MODAL_ERROR_MSG;
CheckError;

}

}while (!(axisStatus & NIMC_HIGH_SPEED_CAPTURE_BIT)
&& !(axisStatus & NIMC_FOLLOWING_ERROR_BIT) &&
!(axisStatus & NIMC_AXIS_OFF_BIT));
//Exit on following error/axis off & high-speed
capture

if((axisStatus & NIMC_FOLLOWING_ERROR_BIT) ||
(axisStatus & NIMC_AXIS_OFF_BIT)){

break; //Break out of the for loop
}

// Update the variables for this cycle
synchronizationPosition += cyclePosition;
correctionPoint += cyclePosition;

// Read the captured position
err = flex_read_cap_pos_rtn(boardID, slaveAxis,
&capturedPosition);
CheckError;

// Load the target position for the registration
//(superimposed) move
err = flex_load_target_pos(boardID, slaveAxis,
(synchronizationPosition - capturedPosition),
0xFF);
CheckError;

// Wait until the axis has passed the correction
point before //applying the correction
currentPosition = 0;

while (currentPosition < correctionPoint){
err = flex_read_pos_rtn(boardID, slaveAxis,
¤tPosition);
CheckError;

}

// Start registration move on the slave

Chapter 16 Rotating Knife

NI-Motion User Manual 16-8 ni.com

err = flex_start(boardID, slaveAxis, 0);
CheckError;

}// For loop

return;// Exit the Application

///////////////////
// Error Handling
///////////////////

nimcHandleError; //NIMCCATCHTHIS:

// Check to see if there were any Modal Errors
if (csr & NIMC_MODAL_ERROR_MSG){

do{
//Get the command ID, resource ID, and the
error code of the //modal error from the error
stack on the device

flex_read_error_msg_rtn(boardID,&commandID,
&resourceID, &errorCode);
nimcDisplayError(errorCode,commandID,resou
rceID);

//Read the communication status register
flex_read_csr_rtn(boardID,&csr);

}while(csr & NIMC_MODAL_ERROR_MSG);
}

else// Display regular error
nimcDisplayError(err,0,0);

return;// Exit the Application
}

© National Instruments Corporation A-1 NI-Motion User Manual

A
Sinusoidal Commutation for
Brushless Servo Motion Control

Sinusoidal commutation allows you to use less expensive servo motor

drives with NI motion controllers that support this feature.

Phase Initialization

When the system is first powered on, the controller must determine the

initial commutation phase. NI motion controllers support several methods

of phase initialization, including Hall effect sensors, shake and wake, and

direct set.

Hall Effect Sensors
The controller can use Hall effect sensors to estimate the commutation

phase based on the state of the sensors. After a Hall effect state transition

occurs, the controller recalculates the phase angle based on the transition

location. To obtain maximum torque at the beginning of the move, perform

a move that is 1/6th of the magnetic cycle after system initialization. Refer

to the hardware documentation for Hall effect sensor types and connection

schemes.

Shake and Wake
“Shake and wake” is an initialization method where the motion controller

outputs a specified voltage for a specified duration. This drives the system

to the zero-degree phase position and allows you to establish the position

as a baseline for all other phase positions.

During this process, the motor moves to the zero-degree position with high

torque. Ensure the system is away from any limits before performing shake

and wake initialization.

If the system has load or is moving against gravity, increase the shake and

wake voltage. If there is significant jitter as the axis approaches zero,

increase the duration.

Appendix A Sinusoidal Commutation for Brushless Servo Motion Control

NI-Motion User Manual A-2 ni.com

Direct Set
Direct set is an initialization method where the controller sets the current

position as the specified phase angle. This initialization method is

recommended only for a custom system with known initial phase angle.

Whenever the axis is enabled, the controller must perform the phase

initialization procedure to determine the phase.

Determining the Counts per Electrical Cycle of the Motor

The controller needs to know the counts per electrical cycle of the motor to

determine the commutation phase. The motor manufacturer usually gives

this specification. In many cases, the information also may be specified as

the number of poles.

To convert from the number of poles to the number of counts per electrical

cycle, use the following formula:

Caution Counts per electrical cycle must be set correctly to avoid overheating and

damaging your motor.

Commutation Frequency

The controller updates the command voltage and the commutation phase

every update period. To commutate brushless motors smoothly, the

controller must update the phase at least six times per electrical cycle.

Therefore, the commutation frequency is limited by the update rate of the

control loop. To calculate the maximum commutation frequency supported

at a particular PID update rate, use the following formula:

counts per electrical cycle
counts per revolution 2×

number of poles
--=

commutation frequency
counts per electrical cycle

PID rate 6×
--=

Appendix A Sinusoidal Commutation for Brushless Servo Motion Control

© National Instruments Corporation A-3 NI-Motion User Manual

Troubleshooting Hall Effect Sensor Connections

Complete the following steps if you have problems with Hall effect sensor

connections.

1. Check the manuals that shipped with the hardware for connection

procedures.

2. Perform a “shake and wake” phase initialization. During this process,

the motor is driven to the zero degree phase position with the

commanded voltage. Make sure the motor is clear of any limits before

you start.

3. Record the Hall effect sensors states by reading the DIO lines

connected to the Hall sensors. Refer to the hardware documentation for

the Hall effect sensor lines. This is the state of the Hall effect sensors

at the zero-degree phase position.

4. Command the motor to move forward at a slow velocity. Record the

state of the Hall effect sensors at each state transition. The state of the

Hall effect sensors should return to the state recorded in step 2 after

six state transitions.

5. Use the Hall sensors transition state as the Hall sensors diagram. Refer

to the hardware documentation for more information on Hall sensor

diagrams. Follow the procedure outlined in the hardware

documentation.

© National Instruments Corporation B-1 NI-Motion User Manual

B
Initializing the Controller
Programmatically

You can initialize the motion controller from within a LabVIEW,

Visual Basic, or C/C++ program, in addition to initializing controllers in

Measurement & Automation Explorer (MAX).

Refer to Table B-1 for the steps you must take to initialize a controller

programmatically and the functions and VIs you use for each step.

Table B-1. Steps for Programmatically Initializing Controllers

Step Function and/or VI

1. Clear the power-up state. Use the Clear Power Up Status VI.

2. Review any errors that occurred on the

controller to determine how best to handle

them.

Use the Read Error Message VI.

3. Make sure all axes are stopped and disabled. Use the Stop Motion and Enable Axes VIs. In

the Stop Motion VI, set Stop Type (Decel) set to

Halt. In the Enable Axes VI, you must set Axis

Bitmap to False for each axis you want to

disable.

4. Unconfigure vector spaces. Use the Configure Vector Space VI with the X

Axis, Y Axis, and Z Axis terminals set to None.

5. Configure resources for axes. Use the Configure Axis Resources VI.

6. Load all axis configuration options you want

to use.

Use the Axis & Resource Configuration palette.

7. Initialize encoders and ADCs, as

appropriate.

Use the appropriate VIs on the Analog & Digital

I/O palette.

8. Enable the axes, but leave them deactivated. Use the Enable Axes VI.

9. Load the appropriate control loop

parameters.

Use the Load Advanced Control Parameter and

either Load Single PID Parameter or Load All

PID Parameters VIs.

Appendix B Initializing the Controller Programmatically

NI-Motion User Manual B-2 ni.com

10. Call halt on all axes to activate them. Use the Stop Motion VI with Stop Type (Decel)

set to Halt stop.

11. Configure capture and compare settings. Use the VIs on the Motion I/O palette to

configure the capture and compare settings.

12. Configure the following optional settings:

• Configure trajectory settings

• Configure find reference settings

• Configure DIO settings

• Configure PWM settings

• Gearing

Use the following palettes or VIs to configure

the optional settings:

• Trajectory Control palette

• Find Reference palette

• Analog & Digital I/O palette

• Configure PWM Output and Load PWM Duty

Cycle VIs

• Gearing palette

Table B-1. Steps for Programmatically Initializing Controllers (Continued)

Step Function and/or VI

© National Instruments Corporation C-1 NI-Motion User Manual

C
Using the Motion Controller with
the LabVIEW Real-Time Module

Using NI-Motion on a real-time (RT) system is designed to be almost

transparent for anyone familiar with NI-Motion. Using NI-Motion with RT

requires the following hardware and software:

• NI PXI chassis with an available PXI slot

• NI PXI Motion controller

• Host computer

• LabVIEW Real-Time Module

• One of the following motion software options:

– NI-Motion (73xx controller support)

– NI SoftMotion Controller 1.0»CANopen Drive Support

For an RT system, you can configure an NI motion controller on a remote

PXI chassis through the remote configuration feature of MAX. You must

install NI-Motion onto the remote system to use RT. Then, program the

RT NI-Motion application exactly the way you would program any other

NI-Motion application.

Complete the following steps to install NI-Motion onto the remote system.

1. Install one of the following software options onto the host system:

• NI-Motion (73xx controller support)

• NI SoftMotion Controller 1.0»CANopen Drive Support

Tip Refer to the Getting Started: NI SoftMotion Controller for Copley CANopen Drives

manual for information about this product.

2. Launch MAX.

3. Expand the Remote Systems tree.

4. Highlight the system on which to install NI-Motion.

5. Select the Software tab.

Appendix C Using the Motion Controller with the LabVIEW Real-Time Module

NI-Motion User Manual C-2 ni.com

6. If NI-Motion is not already installed, right-click within the dialog box

and select Install Software. A dialog appears that lets you select what

to download. Make sure the checkbox next to NI-Motion RT is

selected.

7. Click OK and wait for the software to download.

After the software downloads onto the remote system, complete the

following steps to configure the remote NI motion controller.

1. Wait for the remote system to reboot so MAX is able to communicate

with it.

2. Expand the Remote Systems tree and then expand the Devices and

Interfaces tree.

3. Right-click the remote motion controller icon and select Map to Local

Machine. This assigns a local board ID to the remote motion

controller in the host system.

Mapping the remote controller into the local system allows you to

configure the controller through MAX exactly as you would a

controller that is in the host system. You can initialize the controller,

download firmware, and use the interactive and configuration panels

exactly as you would on a controller installed in the host machine.

You also can write VIs using the remote motion controller through the

local board ID assigned to it.

This allows you to write and debug your VIs on the host, and then

download them to the remote system when you are ready. All you need

to change is the board ID in your VI from the locally assigned

Board ID to the ID assigned by the remote system.

4. Browse to Devices and Interfaces under My System, where there is a

shortcut icon next to a new controller name.

For example, if the motion controller on the remote system is a

PXI-7334, and the remote system has an IP address of

123.456.789.000, then the shortcut device would show a name like

PXI-7334 (X) on 10.0.58.48 (Y).

X is the board ID assigned to the board by the remote system. Use this

board ID for VIs that are downloaded to the remote system through

LabVIEW RT.

Y is the board ID assigned to the remote motion controller by the local

system. Use this board ID for any VIs that run on the host and use the

remote motion controller.

Appendix C Using the Motion Controller with the LabVIEW Real-Time Module

© National Instruments Corporation C-3 NI-Motion User Manual

To remove the mapped motion controller, browse to My System under

Device and Interfaces. Right-click the mapped controller and select

Unmap Remote Device. You should unmap devices when you no longer

need to use them from the host machine.

© National Instruments Corporation D-1 NI-Motion User Manual

D
Technical Support and
Professional Services

Visit the following sections of the National Instruments Web site at

ni.com for technical support and professional services:

• Support—Online technical support resources at ni.com/support

include the following:

– Self-Help Resources—For answers and solutions, visit the

award-winning National Instruments Web site for software drivers

and updates, a searchable KnowledgeBase, product manuals,

step-by-step troubleshooting wizards, thousands of example

programs, tutorials, application notes, instrument drivers, and

so on.

– Free Technical Support—All registered users receive free Basic

Service, which includes access to hundreds of Application

Engineers worldwide in the NI Developer Exchange at

ni.com/exchange. National Instruments Application Engineers

make sure every question receives an answer.

For information about other technical support options in your

area, visit ni.com/services or contact your local office at

ni.com/contact.

• Training and Certification—Visit ni.com/training for

self-paced training, eLearning virtual classrooms, interactive CDs,

and Certification program information. You also can register for

instructor-led, hands-on courses at locations around the world.

• System Integration—If you have time constraints, limited in-house

technical resources, or other project challenges, National Instruments

Alliance Partner members can help. To learn more, call your local

NI office or visit ni.com/alliance.

If you searched ni.com and could not find the answers you need, contact

your local office or NI corporate headquarters. Phone numbers for our

worldwide offices are listed at the front of this manual. You also can visit

the Worldwide Offices section of ni.com/niglobal to access the branch

office Web sites, which provide up-to-date contact information, support

phone numbers, email addresses, and current events.

© National Instruments Corporation G-1 NI-Motion User Manual

Glossary

A

A/D analog-to-digital

absolute mode Treat the target position loaded as position relative to zero (0) while making

a move.

absolute position Position relative to zero.

acceleration/

deceleration

Measurement of the change in velocity as a function of time. Acceleration

and deceleration describes the period when velocity is changing from one

value to another.

active high Signal is active when its value is high (1).

active low Signal is active when its value is low (0).

ADC analog-to-digital converter

address Character code that identifies a specific location, or series of locations,

in memory or on a host PC bus system.

amplifier Drive that delivers power to operate the motor in response to control

signals. In general, the amplifier is designed to operate with a particular

motor type. For example, you cannot use a stepper drive to operate a

DC brush motor.

API application programming interface

axis Unit that controls a motor or any similar motion or control device.

B

b bit—One binary digit, either 0 or 1.

base address Memory address that serves as the starting address for programmable or

I/O bus registers. All other addresses are located by adding to the base

address.

Glossary

NI-Motion User Manual G-2 ni.com

binary Number system with a base of 2.

buffer Temporary storage for acquired or generated data.

bus Group of conductors that interconnect individual circuitry in a computer.

Typically, a bus is the expansion vehicle to which I/O or other devices are

connected.

byte Eight related bits of data, an 8-bit binary number. Also used to denote the

amount of memory required to store 1 byte of data.

C

CCW counter-clockwise—Implies the direction the motor rotates in.

closed-loop Motion control system that uses a feedback device to provide position and

velocity data for status reporting and accurately controlling position and

velocity.

CPU central processing unit

CSR communications status register

CW clockwise—Implies the direction the motor rotates in.

D

DAC digital-to-analog converter

data acquisition The process of collecting and measuring electrical signals from sensors,

transducers, and test probes or fixtures and inputting them to a computer for

processing.

digital I/O port Group of digital input/output signals.

DLL dynamic link library—Provides the API for the motion control devices.

drive Electronic signal amplifier that converts motor control command signals

into higher-voltage signals suitable for driving motors.

driver Software that communicates commands to control a specific motion control

device.

Glossary

© National Instruments Corporation G-3 NI-Motion User Manual

E

encoder Device that translates mechanical motion into electrical signals; used for

monitoring position or velocity in a closed-loop system.

encoder resolution Number of encoder lines between consecutive encoder marker or Z-bit

indexes. If the encoder does not have an index output the encoder resolution

can be referred to as lines per revolution.

F

F farad

FIFO first-in, first-out

filter parameters Indicates the control loop parameter gains (PID gains) for a given axis.

filtering Type of signal conditioning that filters unwanted signals from the signal

being measured.

flash ROM Type of electrically reprogrammable read-only memory.

following error

trip point

Difference between the instantaneous commanded trajectory position and

the feedback position.

full-step Full-step mode of a stepper motor—For a two-phase motor. this refers to

energizing both windings or phases simultaneously.

G

Gnd ground

GND ground

H

half-step Mode of a stepper motor—For a two phase motor, this refers to alternately

energizing two windings and then only one. In half step mode, alternate

steps are strong and weak, but there is significant improvement in

low-speed smoothness over the full-step mode.

Glossary

NI-Motion User Manual G-4 ni.com

home switch (input) Physical position determined by the mechanical system or designer as the

reference location for system initialization. Frequently, the home position is

also regarded as the zero position in an absolute position frame of reference.

host computer Computer in which the motion controller is installed, or that is controlling

the remote system in which the motion controller is installed.

I

I/O input/output—The transfer of data to and from a computer system

involving communications channels, operator interface devices, and/or

motion control interfaces.

ID identification

index Marker between consecutive encoder revolutions.

inverting Polarity of a limit switch, home switch, and so on in active state. If these

switches are active low, they have inverting polarity.

IRQ interrupt request

K

k kilo—The standard metric prefix for 1,000, or 103, used with units of

measure such as volts, hertz, and meters.

K kilo—The prefix for 1,024, or 210, used with B in quantifying data or

computer memory.

L

LIFO last-in, first-out

limit switch/

end-of-travel position

(input)

Sensors that alert the control electronics that the physical end of travel is

near and that the motion must stop.

Glossary

© National Instruments Corporation G-5 NI-Motion User Manual

M

m meters

MCS Move Complete Status

microstep Proportional control of energy in the coils of a Stepper Motor that allow the

motor to move to or stop at locations other than the fixed

magnetic/mechanical pole positions determined by the motor

specifications. This capability facilitates the subdivision of full mechanical

steps on a stepper motor into finer microstep locations that greatly smooth

motor running operation and increase the resolution or number of discrete

positions that a stepper motor can attain in each revolution.

modulo position Treat the position as if it is within the range of total quadrature counts per

revolution for an axis.

N

noise Undesirable electrical signal. Noise comes from external sources such as

the AC power line, motors, generators, transformers, fluorescent lights,

soldering irons, CRT displays, computers, electrical storms, welders, radio

transmitters, and internal sources such as semiconductors, resistors, and

capacitors. Noise corrupts signals.

non-inverting Polarity of a limit switch, home switch, and so on, in active state. If these

switches are active high, they have non-inverting polarity.

O

open collector Method of output capable of sinking current, but not sourcing current.

open-loop Refers to a motion control system where no external sensors, or feedback

devices, are used to provide position or velocity correction signals.

Glossary

NI-Motion User Manual G-6 ni.com

P

PCI peripheral component interconnect—a high-performance expansion bus

architecture originally developed by Intel to replace ISA and EISA. PCI is

achieving widespread acceptance as a standard for PCs and workstations;

it offers a theoretical maximum transfer rate of 132 MB/s.

PID proportional-integral-derivative control loop

PIVff proportional-integral-velocity feed forward

port (1) Communications connection on a computer or a remote controller;

(2) Digital port, consisting of eight lines of digital input and/or output.

position breakpoint Allows a motor to stop at a given point so that another action, such as a data

acquisition or an image acquisition, can take place. You can set position

breakpoints in absolute or relative quadrature counts. When the encoder

reaches a position breakpoint, the associated breakpoint output

immediately transitions.

PWM pulse width modulation—Method of controlling the average current in

a motor phase winding by varying the on-time duty cycle of transistor

switches.

PXI PCI eXtensions for Instrumentation

Q

quadrature counts Encoder line resolution multiplied by four.

R

RAM random-access memory

relative breakpoint Sets the position breakpoint for an encoder in relative quadrature counts.

relative position Destination or target position for motion specified with respect to the

current location, regardless of its value.

relative position mode Position relative to current position.

Glossary

© National Instruments Corporation G-7 NI-Motion User Manual

RPM revolutions per minute—Units for velocity.

RPSPS or RPS/S revolutions per second squared—Units for acceleration and deceleration.

RTR Ready to Receive

S

s seconds

servo Specifies an axis that controls a servo motor.

sinusoidal commutation Method of controlling current in the windings of a brushless servo motor

by using the pattern of a sine wave to shape the smooth delivery of current

to three motor inputs, each 120° out of phase from the next.

stepper Specifies an axis that controls a stepper motor.

T

toggle Changing state from high to low, back to high, and so on.

torque Force tending to produce rotation.

totem pole Method of output capable of sinking and sourcing current.

trapezoidal profile Typical motion trajectory, where a motor accelerates up to the programmed

velocity using the programmed acceleration, traverses at the programmed

velocity, and then decelerates at the programmed acceleration to the target

position.

trigger Any event that causes or starts some form of data capture.

TTL transistor-transistor logic

Glossary

NI-Motion User Manual G-8 ni.com

V

V volts

velocity mode Move the axis continuously at a specified velocity.

W

watchdog Timer task that shuts down, or resets, the motion control device if any

serious error occurs.

word Standard number of bits that a processor or memory manipulates at

one time, typically 8-bit, 16-bit, or 32-bit.

© National Instruments Corporation I-1 NI-Motion User Manual

Index

A
absolute contouring, 7-4

acceleration feedforward, 3-6

acceleration in counts/s2, 4-8

acceleration in RPS/s, 4-9

acquiring data

algorithm, 11-2

C/C++ code, 11-4

data path, 11-1

LabVIEW code, 11-4

adding, measurements to an NI-Motion

application, 2-2

algorithms

position-based straight-line move, 5-2

velocity-based straight-line move, 5-11

Amplifier Gain, 3-7

analog feedback

algorithm, 13-3

C/C++ code, 13-5

flowchart, 13-1

LabVIEW code, 13-4

application notes, xiv

applications

adding measurements, 2-2

creating NI-Motion applications, 2-1, 2-2

rotating knife, 16-1

algorithm, 16-3

C/C++ code, 16-5

LabVIEW code, 16-4

solution, 16-1

scanning, 15-1

blending move segments, 15-7

algorithm, 15-8

C/C++ code, 15-10

LabVIEW code, 15-9

connecting move segments, 15-1

algorithm, 15-2

C/C++ code, 15-4

LabVIEW code, 15-3

user-defined scan path, 15-13

algorithm, 15-15

C/C++ code, 15-17

LabVIEW code, 15-16

arc angles in degrees, 4-12

arc move

circular, 6-1

algorithm, 6-3

C/C++ code, 6-4

LabVIEW code, 6-4

helical, 6-13

algorithm, 6-14

C/C++ code, 6-15

LabVIEW code, 6-15

spherical, 6-7

algorithm, 6-9

C/C++ code, 6-10

LabVIEW code, 6-10

arc moves, 6-1

architecture

functional architecture of NI motion

controllers, 1-4

NI SoftMotion Controller, 1-7

NI-Motion, 1-1, 1-7

automatically starting onboard programs, 14-42

B
blending, 9-1

after delay, 9-4

after first move, 9-3

algorithm, 9-5

C/C++ code, 9-7

LabVIEW code, 9-6

superimposing, 9-2

Index

NI-Motion User Manual I-2 ni.com

blending moves, 9-1

branching onboard programs

algorithm, 14-20

C/C++ code, 14-22

LabVIEW code, 14-21

breakpoints using RTSI, 12-39

breakpoints. See synchronization

buffers

onboard

algorithm, 14-26

data flow, 14-25

C
C/C++ code

position-based straight-line move, 5-5

velocity profiling using velocity

override, 5-20

camming, 10-1

changing a time slice, 14-42

check reference, 8-1

circular arc move, 6-1

algorithm, 6-3

C/C++ code, 6-4

LabVIEW code, 6-4

commutation frequency, A-2

commutation, sinusoidal, A-1

commutation frequency, A-2

determining counts per electrical

cycle, A-2

phase initialization

direct set, A-2

Hall effect sensors, A-1

shake and wake, A-1

troubleshooting Hall effect sensors, A-3

conditional execution of onboard

programs, 14-9

algorithm, 14-11

C/C++ code, 14-12

LabVIEW code, 14-12

configuration

tuning, 3-1

contoured move, 7-2

absolute versus relative, 7-4

algorithm, 7-3

C/C++ code, 7-6

data path, 7-1

LabVIEW code, 7-5

contoured moves, 7-1

control loop, 1-6, 3-2

acceleration feedforward, 3-6

derivative gain, 3-5

dual loop feedback, 3-7

algorithm, 3-8

Ga, 3-7

integral gain, 3-4

Kdac, 3-6

Kt, 3-7

proportional gain, 3-4

velocity feedback, 3-5, 3-9

algorithm, 3-10

velocity amplifiers, 3-10

velocity feedforward, 3-5

controlling torque, 13-1

conventions used in the manual, xiii

counts per electrical cycle, A-2

creating NI-Motion applications, 2-1

generic steps diagram, 2-2

I/O diagram, 2-3

D
data, acquiring time-sampled position and

velocity

algorithm, 11-2

C/C++ code, 11-4

data path, 11-1

LabVIEW code, 11-4

derivative gain, 3-5

diagnostic tools (NI resources), D-1

Digital to Analog Converter gain, 3-6

Index

© National Instruments Corporation I-3 NI-Motion User Manual

direct set, A-2

documentation, xiv

conventions used in manual, xiii

NI resources, D-1

related documentation, xiv

drivers (NI resources), D-1

dual loop feedback, 3-7

algorithm, 3-8

E
electrical cycle, counts per, A-2

electronic camming, 10-1

electronic gearing. See gearing

encoders

pulses using RTSI, 12-39

event polling, 4-14

examples, xiv

default installation directory, xv

examples (NI resources), D-1

F
feedback

dual loop, 3-7

algorithm, 3-8

velocity, 3-9

algorithm, 3-10

velocity amplifiers, 3-10

find home, 8-1

find index, 8-1

find reference, 8-1

forward limit, 8-1

frequency, commutation, A-2

G
Ga, 3-7

gear ratio, 10-1

gearing, 10-1

algorithm, 10-2

C/C++ code, 10-5, 10-19

LabVIEW code, 10-5, 10-19

graphing data, 4-14

H
Hall effect sensors, A-1

troubleshooting, A-3

hardware

functional architecture of NI motion

controllers, 1-4

interaction with NI-Motion driver

software, 1-2

helical arc move, 6-13

algorithm, 6-14

C/C++ code, 6-15

LabVIEW code, 6-15

help

application notes, xiv

Motion Hardware Advisor, xv

NI Developer Zone, xv

technical support, D-1

high-speed capture input using RTSI, 12-40

high-speed capture. See synchronization

home, 8-1

I
index, 8-1

indirect variables, onboard programs, 14-24

initialization, programmatic, B-1

input and output with data acquisition, 2-3

input and output with image acquisition, 2-3

input/output. See synchronization

inputs, 2-3

instrument drivers (NI resources), D-1

integral gain, 3-4

introduction, I-1

configuring the system

real-time, C-1

tuning the motors, 3-1

Index

NI-Motion User Manual I-4 ni.com

control loop, 3-2

acceleration feedforward, 3-6

derivative gain, 3-5

dual loop feedback, 3-7

algorithm, 3-8

Ga, 3-7

integral gain, 3-4

Kdac, 3-6

Kt, 3-7

proportional gain, 3-4

velocity feedback, 3-5, 3-9

algorithm, 3-10

velocity amplifiers, 3-10

velocity feedforward, 3-5

creating NI-Motion applications, 2-1

generic steps diagram, 2-2

I/O diagram, 2-3

documentation, xiv

examples, xiv

NI motion controller architecture

control loop, 1-6

functional architecture, 1-4

functional architecture diagram, 1-6

motion I/O, 1-7

physical architecture, 1-2

supervisory control, 1-6

trajectory generator, 1-6

NI-Motion, 1-1

architecture, 1-2

software/hardware interaction, 1-2

J
jogging, 5-10, 5-17

K
Kdac, 3-6

KnowledgeBase, D-1

Kt, 3-7

L
LabVIEW code

position-based straight-line move, 5-3

velocity profiling using velocity

override, 5-19

velocity-based straight-line move, 5-13

limits, 8-1

looping onboard programs

algorithm, 14-20

C/C++ code, 14-22

LabVIEW code, 14-21

loops, timing

event polling, 4-14

graphing data, 4-14

status display, 4-14

M
master axis, 10-1, 10-4

math operations, onboard programs, 14-24

MAX configuration

real-time, C-1

tuning, 3-1

monitoring force

algorithm, 13-9

C/C++ code, 13-11

flowchart, 13-8

LabVIEW code, 13-10

Motion Hardware Advisor, xv

motion I/O, 1-7

moves

arc move

circular, 6-1

algorithm, 6-3

C/C++ code, 6-4

LabVIEW code, 6-4

helical, 6-13

algorithm, 6-14

C/C++ code, 6-15

LabVIEW code, 6-15

Index

© National Instruments Corporation I-5 NI-Motion User Manual

spherical, 6-7

algorithm, 6-9

C/C++ code, 6-10

LabVIEW code, 6-10

arc moves, 6-1

blending, 9-1

after delay, 9-4

after first move, 9-3

algorithm, 9-5

C/C++ code, 9-7

LabVIEW code, 9-6

superimposing, 9-2

camming, 10-1

contoured move

absolute versus relative, 7-4

algorithm, 7-3

C/C++ code, 7-6

data path, 7-1

LabVIEW code, 7-5

contoured moves, 7-1

gearing, 10-1

algorithm, 10-2

C/C++ code, 10-5, 10-19

LabVIEW code, 10-5, 10-19

reference move

algorithm, 8-2

C++ code, 8-3

check reference, 8-1

find reference, 8-1

LabVIEW code, 8-3

wait reference, 8-1

reference moves, 8-1

straight-line move

position-based, 5-1

algorithm, 5-2

C/C++ code, 5-5

LabVIEW code, 5-3

velocity profiling using velocity

override, 5-17

algorithm, 5-18

C/C++ code, 5-20

LabVIEW code, 5-19

velocity-based, 5-10

algorithm, 5-11

LabVIEW code, 5-13

straight-line moves, 4-1, 5-1

N
National Instruments support and

services, D-1

NI Developer Zone, xv

NI motion controller

control loop, 1-6

functional architecture, 1-4

functional architecture diagram, 1-6

motion I/O, 1-7

physical architecture, 1-2

supervisory control, 1-6

trajectory generator, 1-6

NI support and services, D-1

NIDZ, xv

NI-Motion

adding measurements to applications, 2-2

architecture, 1-2

creating applications, 2-1, 2-2

documentation, xiv

examples, xiv

introduction, 1-1

using with data acquisition, 2-3

using with image acquisition, 2-3

NI-Motion applications

adding measurements, 2-2

creating, 2-1, 2-2

NI-Motion architecture, 1-1, 1-7

O
onboard buffers

algorithm, 14-26

data flow, 14-25

Index

NI-Motion User Manual I-6 ni.com

onboard programs, 14-2

algorithm, 14-4

automatically starting, 14-42

branching

algorithm, 14-20

C/C++ code, 14-22

LabVIEW code, 14-21

buffers

algorithm, 14-26

data flow, 14-25

changing a time slice, 14-42

conditional execution, 14-9

algorithm, 14-11

C/C++ code, 14-12

LabVIEW code, 14-12

description, 14-2

indirect variables, 14-24

looping

algorithm, 14-20

C/C++ code, 14-22

LabVIEW code, 14-21

math operations, 14-24

pausing, 14-8

automatic, 14-9

single-stepping, 14-9

priority, 14-3

resuming, 14-8

running, 14-8

simple C/C++ code, 14-6

simple LabVIEW code, 14-5

stopping, 14-8

subroutines

algorithm, 14-34

C/C++ code, 14-38

LabVIEW code, 14-35

synchronizing host applications

with, 14-26

algorithm, 14-27

C/C++ code, 14-30

data flow, 14-27

LabVIEW code, 14-28

using onboard memory and data, 14-14

algorithm, 14-15

C/C++ code, 14-17

LabVIEW code, 14-16

writing, 14-3

output. See synchronization

outputs, 2-3

P
pausing onboard programs, 14-8

automatic, 14-9

single-stepping, 14-9

phase initialization

direct set, A-2

Hall effect sensors, A-1

shake and wake, A-1

position breakpoints using RTSI, 12-39

programmatic initialization, B-1

programming examples (NI resources), D-1

programs, onboard. See onboard programs

proportional gain, 3-4

R
radius, 6-2

ratio, gear, 10-1

real-time, using NI motion controllers

with, C-1

reference move

algorithm, 8-2

C/C++ code, 8-3

LabVIEW code, 8-3

reference moves, 8-1

related documentation, xiv

relative contouring, 7-4

resuming onboard programs, 14-8

reverse limit, 8-1

rotating knife application, 16-1

algorithm, 16-3

C/C++ code, 16-5

Index

© National Instruments Corporation I-7 NI-Motion User Manual

LabVIEW code, 16-4

solution, 16-1

RTSI

encoder pulses, 12-39

hardware implementation, 12-38

high-speed capture input, 12-40

software trigger, 12-39

using breakpoints with, 12-39

run sequence, 8-1

running onboard programs, 14-8

S
scanning

blending move segments, 15-7

algorithm, 15-8

C/C++ code, 15-10

LabVIEW code, 15-9

connecting move segments, 15-1

algorithm, 15-2

C/C++ code, 15-4

LabVIEW code, 15-3

user-defined scan path, 15-13

algorithm, 15-15

C/C++ code, 15-17

LabVIEW code, 15-16

servo tuning, 3-1

control loop, 3-2

acceleration feedforward, 3-6

derivative gain, 3-5

dual loop feedback, 3-7

algorithm, 3-8

Ga, 3-7

integral gain, 3-4

Kdac, 3-6

Kt, 3-7

proportional gain, 3-4

velocity feedback, 3-5, 3-9

algorithm, 3-10

velocity amplifiers, 3-10

velocity feedforward, 3-5

shake and wake, A-1

single-stepping onboard programs, 14-9

sinusoidal commutation, A-1

commutation frequency, A-2

determining counts per electrical

cycle, A-2

phase initialization

direct set, A-2

Hall effect sensors, A-1

shake and wake, A-1

troubleshooting Hall effect sensors, A-3

slave axis, 10-1, 10-4

software

interaction with NI motion control

hardware, 1-2

NI resources, D-1

software trigger using RTSI, 12-39

software/hardware interaction, 1-2

speed control, 13-14

algorithm, 13-14

C/C++ code, 13-16

LabVIEW code, 13-15

spherical arc move, 6-7

algorithm, 6-9

C/C++ code, 6-10

LabVIEW code, 6-10

start angle, 6-2

status display, 4-14

stopping onboard programs, 14-8

straight-line move

position-based, 5-1

algorithm, 5-2

C/C++ code, 5-5

LabVIEW code, 5-3

velocity profiling using velocity

override, 5-17

algorithm, 5-18

C/C++ code, 5-20

LabVIEW code, 5-19

velocity-based, 5-10

algorithm, 5-11

Index

NI-Motion User Manual I-8 ni.com

LabVIEW code, 5-13

straight-line moves, 4-1, 5-1

subroutines, onboard

algorithm, 14-34

C/C++ code, 14-38

LabVIEW code, 14-35

supervisory control, 1-6

support, technical, D-1

synchronization, 12-1

breakpoint

modes, 12-2

breakpoints

absolute, 12-2

buffered, 12-3

algorithm, 12-4

C/C++ code, 12-5

LabVIEW code, 12-5

modulo, 12-21

algorithm, 12-23

C/C++ code, 12-25

LabVIEW code, 12-24

periodic

algorithm, 12-17

C/C++ code, 12-18

LabVIEW code, 12-18

relative position, 12-12

algorithm, 12-13

C/C++ code, 12-14

LabVIEW code, 12-14

single

algorithm, 12-8

C/C++ code, 12-10

LabVIEW code, 12-9

LabVIEW code with RTSI,

12-10

high-speed capture, 12-27

buffered, 12-27

C/C++ code, 12-29

non-buffered

algorithm, 12-33

C/C++ code, 12-35

LabVIEW code, 12-34

single

algorithm, 12-33

C/C++ code, 12-35

LabVIEW code, 12-34

RTSI

encoder pulses, 12-39

hardware implementation, 12-38

high-speed capture input, 12-40

software trigger, 12-39

using breakpoints with, 12-39

synchronizing host applications with onboard

programs, 14-26

algorithm, 14-27

C/C++ code, 14-30

data flow, 14-27

LabVIEW code, 14-28

T
technical support, D-1

time slice, changing, 14-42

timing your loops

event polling, 4-14

graphing data, 4-14

status display, 4-14

torque constant, 3-7

torque control

analog feedback

algorithm, 13-3

C/C++ code, 13-5

flowchart, 13-1

LabVIEW code, 13-4

monitoring force, 13-8

algorithm, 13-9

C/C++ code, 13-11

flowchart, 13-8

LabVIEW code, 13-10

training and certification (NI resources), D-1

trajectory generator, 1-6

Index

© National Instruments Corporation I-9 NI-Motion User Manual

trajectory parameters

acceleration in counts/s2, 4-8

acceleration in RPS/s, 4-9

arc angles in degrees, 4-12

velocity in steps/counts per second, 4-7

velocity override in percent, 4-11

travel angle, 6-2

troubleshooting (NI resources), D-1

tuning the motors, 3-1

U
using

data acquisition with NI-Motion, 2-3

image acquisition with NI-Motion, 2-3

using onboard memory and data, 14-14

algorithm, 14-15

C/C++ code, 14-17

LabVIEW code, 14-16

V
variables, indirect, 14-24

velocity feedback, 3-5, 3-9

algorithm, 3-10

velocity amplifiers, 3-10

velocity feedforward, 3-5

velocity override in percent, 4-11

velocity profiling, 5-10, 5-17

velocity, counts/steps per second, 4-7

W
wait reference, 8-1

Web resources, D-1

	NI-Motion User Manual
	Support
	Worldwide Technical Support and Product Information
	National Instruments Corporate Headquarters
	Worldwide Offices

	Important Information
	Warranty
	Copyright
	Trademarks
	Patents
	WARNING REGARDING USE OF NATIONAL INSTRUMENTS PRODUCTS

	Contents
	About This Manual
	Conventions
	Documentation and Examples

	Part I Introduction
	Chapter 1 Introduction to NI-Motion
	About NI-Motion
	NI-Motion Architecture
	Software and Hardware Interaction
	Figure 1-1. NI Motion Control Hardware and Software Interaction

	NI Motion Controller Architecture
	NI 73xx Architecture
	Figure 1-2. Physical NI Motion Controller Architecture

	NI Motion Controller Functional Architecture
	Figure 1-3. Typical NI 73xx Motion Controller Functional Architecture
	Figure 1-4. NI SoftMotion Controller Functional Architecture
	Figure 1-5. NI Motion Controller Functional Architecture
	NI SoftMotion Controller Architecture
	Figure 1-6. NI SoftMotion Controller Functional Architecture for Ormec
	Figure 1-7. NI SoftMotion Controller Functional Architecture for CANopen

	NI SoftMotion Controller Communication Watchdog

	Chapter 2 Creating NI-Motion Applications
	Creating a Generic NI-Motion Application
	Figure 2-1. Generic Steps for Designing a Motion Application

	Adding Measurements to an NI-Motion Application
	Figure 2-2. Input/Output with Data and Image Acquisition

	Part II Configuring Motion Control
	Chapter 3 Tuning Servo Systems
	NI SoftMotion Controller Considerations
	NI SoftMotion Controller for CANopen
	NI SoftMotion Controller for Ormec

	Using Control Loops to Tune Servo Motors
	Figure 3-1. Properly Tuned Servo Motor Behavior
	Control Loop
	Figure 3-2. NI-Motion Servo PID Loop
	PID Loop Descriptions
	Figure 3-3. Dual Loop Feedback
	Figure 3-4. Dual Loop Feedback Algorithm

	Velocity Feedback
	Figure 3-5. Velocity Feedback
	Figure 3-6. Alternate Dual-Loop Feedback Algorithm

	NI Motion Controllers with Velocity Amplifiers
	Figure 3-7. NI Motion Controllers with Velocity Amplifiers
	Figure 3-8. NI Motion Controllers with Velocity Amplifiers Algorithm

	Part III Programming with NI-Motion
	Chapter 4 What You Need to Know about Moves
	Move Profiles
	Trapezoidal
	Figure 4-1. Trapezoidal Move Profile

	S-Curve
	Figure 4-2. S-Curve Move Profile
	Basic Moves
	Coordinate Space
	Figure 4-3. 3D Coordinate Space
	Multi-Starts versus Coordinate Spaces

	Trajectory Parameters
	NI 73xx Floating-Point versus Fixed-Point
	NI 73xx Time Base
	Table 4-1. Velocity in Counts/Min
	Table 4-2. Acceleration Update Rate in Counts/Sec2
	Table 4-3. Acceleration Update Rate in RPS/s

	NI 73xx Arc Move Limitations

	Timing Loops
	Status Display
	Graphing Data
	Event Polling

	Chapter 5 Straight-Line Moves
	Position-Based Straight-Line Moves
	Straight-Line Move Algorithm
	Figure 5-1. Position-Based Straight-Line Move Algorithm
	Figure 5-2. 1D Straight-Line Move in LabVIEW
	Figure 5-3. 2D Straight-Line Move in LabVIEW

	C/C++ Code
	1D Straight-Line Move Code
	2D Straight-Line Move Code

	Velocity-Based Straight-Line Moves
	Algorithm
	Figure 5-4. Velocity-Based Straight-Line Move Algorithm
	Figure 5-5. Velocity Profile

	LabVIEW Code
	Figure 5-6. Velocity-Based Straight-Line Move in LabVIEW

	C/C++ Code

	Velocity Profiling Using Velocity Override
	Algorithm
	Figure 5-7. Velocity Override Algorithm

	LabVIEW Code
	Figure 5-8. Velocity-Based Move Using Velocity Override in LabVIEW

	C/C++ Code

	Chapter 6 Arc Moves
	Figure 6-1. Arc Move Data Path
	Circular Arcs
	Figure 6-2. Rotating Start Angle
	Figure 6-3. Positive and Negative Travel Angles
	Arc Move Algorithm
	Figure 6-4. Circular Arc Move Algorithm

	LabVIEW Code
	Figure 6-5. Circular Arc Move in LabVIEW

	C/C++ Code

	Spherical Arcs
	Figure 6-6. Changing Pitch by Rotating the X Axis
	Figure 6-7. Changing Yaw by Rotating the Z Axis
	Algorithm
	Figure 6-8. Spherical Arc Algorithm

	LabVIEW Code
	Figure 6-9. Spherical Arc Move in LabVIEW

	C/C++ Code

	Helical Arcs
	Figure 6-10. Helical Arc
	Algorithm
	Figure 6-11. Helical Arc Algorithm

	LabVIEW Code
	Figure 6-12. Helical Arc Move in LabVIEW

	C/C++ Code

	Chapter 7 Contoured Moves
	Figure 7-1. Contoured Move Data Path
	Overview
	Arbitrary Contoured Moves
	Contoured Move Algorithm
	Figure 7-2. Contoured Move Algorithm
	Absolute versus Relative Contouring
	Figure 7-3. Absolute Contouring Buffer Values
	Figure 7-4. Relative Contouring Buffer Values

	LabVIEW Code
	Figure 7-5. Contoured Move in LabVIEW
	Figure 7-6. Contoured Move True Case in LabVIEW

	C/C++ Code

	Chapter 8 Reference Moves
	Find Reference Move
	Reference Move Algorithm
	Figure 8-1. Find Reference Move Algorithm

	LabVIEW Code
	Figure 8-2. Find Reference Move in LabVIEW

	C/C++ Code

	Chapter 9 Blending Moves
	Blending
	Figure 9-1. Two Blended Straight-Line Moves
	Superimpose Two Moves
	Figure 9-2. Superimposing Two Moves

	Blend after First Move Is Complete
	Figure 9-3. Blending after Move Complete

	Blend after Delay
	Figure 9-4. Blending after a Delay

	Blending Algorithm
	Figure 9-5. Blending Algorithm

	LabVIEW Code
	Figure 9-6. Blended Straight-Line Move and Arc Move in LabVIEW

	C/C++ Code

	Chapter 10 Electronic Gearing and Camming
	Gearing
	Algorithm
	Figure 10-1. Electronic Gearing Algorithm
	Figure 10-2. Relative Gearing at Enable
	Figure 10-3. Absolute Gearing at Gear Ratio Change
	Gear Master

	LabVIEW Code
	Figure 10-4. Tracking an Encoder Using Electronic Gearing with Superimposed Move

	C/C++ Code

	Camming
	Figure 10-5. Master/Slave Ratio in Gearing
	Figure 10-6. Multiple Camming Gear Ratios
	Figure 10-7. Welding Application
	Algorithm
	Figure 10-8. Camming Algorithm

	Camming Table
	Figure 10-9. Welding Application Time and Speed Constraints
	Figure 10-10. First and Second Move Segment Profile
	Table 10-1. Welding Application Cam Table
	Figure 10-11. Master and Slave Positions at Enable
	Figure 10-12. Master Axis Moves within Interval
	Figure 10-13. Gear Ratio Change
	Figure 10-14. Camming Cycle Repeats
	Slave Offset
	Table 10-2. Camming Profile with and without Slave Offset
	Figure 10-15. Camming without Offset
	Master Offset
	Figure 10-16. Misaligned Material and Welding Point
	Figure 10-17. Camming Profile Starts when First Material Passes
	Figure 10-18. Camming Profiles with and without Master Offset

	LabVIEW Code
	Figure 10-19. Axis to Axis Camming

	C/C++ Code

	Chapter 11 Acquiring Time-Sampled Position and Velocity Data
	Figure 11-1. Acquire Data Path
	Algorithm
	Figure 11-2. Acquire Data Algorithm

	LabVIEW Code
	Figure 11-3. Acquire Data Using LabVIEW

	C/C++ Code

	Chapter 12 Synchronization
	Table 12-1. Breakpoint Modes on NI Motion Controllers
	Absolute Breakpoints
	Buffered Breakpoints (NI 7350 only)
	Buffered Breakpoint Algorithm
	Figure 12-1. Buffered Breakpoint Algorithm
	LabVIEW Code
	Figure 12-2. Buffered Position Breakpoint in LabVIEW
	C/C++ Code

	Single Position Breakpoints
	Single Position Breakpoint Algorithm
	Figure 12-3. Single Position Breakpoint Algorithm
	LabVIEW Code
	Figure 12-4. Single Position Breakpoint in LabVIEW
	Figure 12-5. Single Position Breakpoint With RTSI Using LabVIEW
	C/C++ Code

	Relative Position Breakpoints
	Relative Position Breakpoints Algorithm
	Figure 12-6. Relative Position Breakpoints Algorithm

	LabVIEW Code
	Figure 12-7. Relative Position Breakpoint with RTSI Using LabVIEW

	C/C++ Code

	Periodically Occurring Breakpoints
	Periodic Breakpoints (NI 7350 only)
	Figure 12-8. Periodic Breakpoint Every 1,000 Counts/Steps
	Periodic Breakpoint Algorithm
	Figure 12-9. Periodic Breakpoint Algorithm
	LabVIEW Code
	Figure 12-10. Periodic Breakpoint Output
	C/C++ Code

	Modulo Breakpoints (NI 7330, NI 7340 and NI 7390 only)
	Figure 12-11. Breakpoint Modulus of 500
	Figure 12-12. Breakpoint Modulus of 2000 with an Offset of 500
	Modulo Breakpoints Algorithm
	Figure 12-13. Modulo Breakpoints Algorithm

	LabVIEW Code
	Figure 12-14. Modulo Breakpoint Using LabVIEW
	Figure 12-15. Modulo Breakpoint with RTSI Using LabVIEW

	C/C++ Code

	High-Speed Capture
	Buffered High-Speed Capture (NI 7350 only)
	Buffered High-Speed Capture Algorithm
	Figure 12-16. Buffered High-Speed Capture Algorithm

	LabVIEW Code
	Figure 12-17. Buffered High-Speed Capture in LabVIEW

	C/C++ Code
	Non-Buffered High-Speed Capture
	High-Speed Capture Algorithm
	Figure 12-18. High-Speed Capture Algorithm

	LabVIEW Code
	Figure 12-19. High-Speed Capture Using LabVIEW
	Figure 12-20. High-Speed Capture with RTSI Using LabVIEW

	C/C++ Code

	Real-Time System Integration Bus (RTSI)
	RTSI Implementation on the Motion Controller
	Figure 12-21. RTSI Implementation on the Motion Controller

	Position Breakpoints Using RTSI
	Figure 12-22. Position Breakpoint Using RTSI

	Encoder Pulses Using RTSI
	Figure 12-23. Encoder Pulses Using RTSI

	Software Trigger Using RTSI
	Figure 12-24. Software Trigger Using RTSI

	High-Speed Capture Input Using RTSI
	Figure 12-25. High-Speed Capture Input Using RTSI

	Chapter 13 Torque Control
	Analog Feedback
	Figure 13-1. Torque Control Using Analog Feedback Flowchart
	Torque Control Using Analog Feedback Algorithm
	Figure 13-2. Torque Control Using Analog Feedback Algorithm

	LabVIEW Code
	Figure 13-3. Torque Control Using Analog Feedback Using LabVIEW

	C/C++ Code

	Monitoring Force
	Figure 13-4. Torque Control Using Analog Feedback Flowchart
	Torque Control Using Monitoring Force Algorithm
	Figure 13-5. Torque Control Using Monitoring Force Algorithm

	LabVIEW Code
	Figure 13-6. Torque Control Using Monitoring Force in LabVIEW

	C/C++ Code

	Speed Control Based on Analog Value
	Speed Control Based on Analog Feedback Algorithm
	Figure 13-7. Speed Control Based on Analog Feedback Algorithm

	LabVIEW Code
	Figure 13-8. Speed Control Based on Analog Feedback Using LabVIEW

	C/C++ Code

	Chapter 14 Onboard Programs
	Using Onboard Programs with the NI SoftMotion Controller
	Using Onboard Programs with NI 73xx Motion Controllers
	Figure 14-1. Onboard Program Priority
	Writing Onboard Programs
	Figure 14-2. Writing Onboard Programs

	Algorithm
	Figure 14-3. Basic Onboard Program Algorithm

	LabVIEW Code
	Figure 14-4. Onboard Program in LabVIEW

	C/C++ Code

	Running, Stopping, and Pausing Onboard Programs
	Running an Onboard Program
	Stopping an Onboard Program
	Pausing/Resuming an Onboard Program
	Automatic Pausing
	Single-Stepping Using Pause

	Conditionally Executing Onboard Programs
	Figure 14-5. Executing Onboard Programs
	Onboard Program Conditional Execution Algorithm
	Figure 14-6. Onboard Program Conditional Execution Algorithm

	LabVIEW Code
	Figure 14-7. Onboard Program Waiting for an I/O Line to Go Active

	C/C++ Code

	Using Onboard Memory and Data
	Algorithm
	Figure 14-8. Updating Velocity Based on ADC Channel Algorithm

	LabVIEW Code
	Figure 14-9. Updating Velocity Based on ADC Channel in LabVIEW

	C/C++ Code

	Branching Onboard Programs
	Onboard Program Algorithm
	Figure 14-10. Using Labels with Onboard Programs

	LabVIEW Code
	Figure 14-11. Continuously Executing Onboard Program in LabVIEW

	C/C++ Code

	Math Operations
	Indirect Variables
	Figure 14-12. Reading an Indirect Variable

	Onboard Buffers
	Figure 14-13. Onboard Buffer Data Flow
	Algorithm
	Figure 14-14. Onboard Buffer Algorithm

	Synchronizing Host Applications with Onboard Programs
	Figure 14-15. Synchronizing Host Applications with Onboard Programs
	Figure 14-16. Synchronization Algorithm
	LabVIEW Code
	Figure 14-17. Synchronization Onboard Code in LabVIEW
	Figure 14-18. Synchronization Host Code in LabVIEW

	C/C++ Code

	Onboard Subroutines
	Algorithm
	Figure 14-19. Onboard Subroutine Algorithm

	LabVIEW Code
	Figure 14-20. Onboard Subroutine Call Using LabVIEW
	Figure 14-21. Clockwise Subroutine Using LabVIEW
	Figure 14-22. Counter Clockwise Subroutine Using LabVIEW

	C/C++ Code

	Automatically Starting Onboard Programs
	Changing a Time Slice

	Part IV Creating Applications Using NI-Motion
	Chapter 15 Scanning
	Connecting Straight-Line Move Segments
	Figure 15-1. Raster Scanning Path
	Raster Scanning Using Straight Lines Algorithm
	Figure 15-2. Raster Scanning Using Straight Lines Algorithm

	LabVIEW Code
	Figure 15-3. Scanning Using LabVIEW

	C/C++ Code

	Blending Straight-Line Move Segments
	Figure 15-4. Blended Raster Scanning Path
	Raster Scanning Using Blended Straight Lines Algorithm
	Figure 15-5. Raster Scanning Using Blended Straight Lines Algorithm

	LabVIEW Code
	Figure 15-6. Scanning Using Blending

	C/C++ Code

	User-Defined Scanning Path
	Figure 15-7. User-Defined Scanning Path
	User-Defined Scanning Path Algorithm
	Figure 15-8. User-Defined Scanning Path Algorithm

	LabVIEW Code
	Figure 15-9. Scanning Using Contouring

	C/C++ Code

	Chapter 16 Rotating Knife
	Solution
	Figure 16-1. Rotating Knife
	Algorithm
	Figure 16-2. Rotating Knife Application Algorithm

	LabVIEW Code
	Figure 16-3. Rotating Knife Application Using LabVIEW
	Figure 16-4. Figure 16-3 Sequence Structure 1
	Figure 16-5. Figure 16-3 Sequence Structure 2

	C/C++ Code

	Appendix A Sinusoidal Commutation for Brushless Servo Motion Control
	Appendix B Initializing the Controller Programmatically
	Table B-1. Steps for Programmatically Initializing Controllers

	Appendix C Using the Motion Controller with the LabVIEW Real-Time Module
	Appendix D Technical Support and Professional Services
	Glossary
	A-B
	C-D
	E-H
	I-L
	M-O
	P-R
	S-T
	V-W

	Index
	A-B
	C-D
	E-I
	J-M
	N-O
	P-R
	S
	T
	U-W

