

 PXI-7831R

https://www.apexwaves.com/modular-systems/national-instruments/r-series/PXI-7831R?aw_referrer=pdf
https://www.apexwaves.com/modular-systems/national-instruments/r-series/PXI-7831R?aw_referrer=pdf
https://www.apexwaves.com/modular-systems/national-instruments/r-series/PXI-7831R?aw_referrer=pdf

LabVIEW
TM

FPGA Module User Manual

FPGA Module User Manual

April 2003 Edition

Part Number 370690A-01

Support

Worldwide Technical Support and Product Information

ni.com

National Instruments Corporate Headquarters

11500 North Mopac Expressway Austin, Texas 78759-3504 USA Tel: 512 683 0100

Worldwide Offices

Australia 61 2 9672 8846, Austria 43 0 662 45 79 90 0, Belgium 32 0 2 757 00 20, Brazil 55 11 3262 3599,

Canada (Calgary) 403 274 9391, Canada (Montreal) 514 288 5722, Canada (Ottawa) 613 233 5949,

Canada (Québec) 514 694 8521, Canada (Toronto) 905 785 0085, Canada (Vancouver) 514 685 7530,

China 86 21 6555 7838, Czech Republic 420 2 2423 5774, Denmark 45 45 76 26 00,

Finland 385 0 9 725 725 11, France 33 0 1 48 14 24 24, Germany 49 0 89 741 31 30, Greece 30 2 10 42 96 427,

Hong Kong 2645 3186, India 91 80 51190000, Israel 972 0 3 6393737, Italy 39 02 413091,

Japan 81 3 5472 2970, Korea 82 02 3451 3400, Malaysia 603 9059 6711, Mexico 001 800 010 0793,

Netherlands 31 0 348 433 466, New Zealand 64 09 914 0488, Norway 47 0 32 27 73 00,

Poland 48 0 22 3390 150, Portugal 351 210 311 210, Russia 7 095 238 7139, Singapore 65 6 226 5886,

Slovenia 386 3 425 4200, South Africa 27 0 11 805 8197, Spain 34 91 640 0085, Sweden 46 0 8 587 895 00,

Switzerland 41 56 200 51 51, Taiwan 886 2 2528 7227, United Kingdom 44 0 1635 523545

For further support information, refer to the Technical Support and Professional Services appendix. To comment

on the documentation, send email to techpubs@ni.com.

© 2003 National Instruments Corporation. All rights reserved.

 Important Information

Warranty
The media on which you receive National Instruments software are warranted not to fail to execute programming instructions, due to defects
in materials and workmanship, for a period of 90 days from date of shipment, as evidenced by receipts or other documentation. National
Instruments will, at its option, repair or replace software media that do not execute programming instructions if National Instruments receives
notice of such defects during the warranty period. National Instruments does not warrant that the operation of the software shall be
uninterrupted or error free.

A Return Material Authorization (RMA) number must be obtained from the factory and clearly marked on the outside of the package before
any equipment will be accepted for warranty work. National Instruments will pay the shipping costs of returning to the owner parts which are
covered by warranty.

National Instruments believes that the information in this document is accurate. The document has been carefully reviewed for technical
accuracy. In the event that technical or typographical errors exist, National Instruments reserves the right to make changes to subsequent
editions of this document without prior notice to holders of this edition. The reader should consult National Instruments if errors are suspected.
In no event shall National Instruments be liable for any damages arising out of or related to this document or the information contained in it.

EXCEPT AS SPECIFIED HEREIN, NATIONAL INSTRUMENTS MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AND SPECIFICALLY DISCLAIMS ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. CUSTOMER’S RIGHT TO RECOVER DAMAGES CAUSED BY FAULT OR NEGLIGENCE ON THE PART OF
NATIONAL INSTRUMENTS SHALL BE LIMITED TO THE AMOUNT THERETOFORE PAID BY THE CUSTOMER. NATIONAL INSTRUMENTS WILL NOT BE LIABLE FOR
DAMAGES RESULTING FROM LOSS OF DATA, PROFITS, USE OF PRODUCTS, OR INCIDENTAL OR CONSEQUENTIAL DAMAGES, EVEN IF ADVISED OF THE POSSIBILITY
THEREOF. This limitation of the liability of National Instruments will apply regardless of the form of action, whether in contract or tort, including
negligence. Any action against National Instruments must be brought within one year after the cause of action accrues. National Instruments
shall not be liable for any delay in performance due to causes beyond its reasonable control. The warranty provided herein does not cover
damages, defects, malfunctions, or service failures caused by owner’s failure to follow the National Instruments installation, operation, or
maintenance instructions; owner’s modification of the product; owner’s abuse, misuse, or negligent acts; and power failure or surges, fire,
flood, accident, actions of third parties, or other events outside reasonable control.

Copyright
Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or mechanical, including photocopying,
recording, storing in an information retrieval system, or translating, in whole or in part, without the prior written consent of National
Instruments Corporation.

Trademarks
LabVIEW™, National Instruments™, NI™, and ni.com™ are trademarks of National Instruments Corporation.

Product and company names mentioned herein are trademarks or trade names of their respective companies.

Patents
For patents covering National Instruments products, refer to the appropriate location: Help»Patents in your software, the patents.txt file
on your CD, or ni.com/patents.

WARNING REGARDING USE OF NATIONAL INSTRUMENTS PRODUCTS
(1) NATIONAL INSTRUMENTS PRODUCTS ARE NOT DESIGNED WITH COMPONENTS AND TESTING FOR A LEVEL OF
RELIABILITY SUITABLE FOR USE IN OR IN CONNECTION WITH SURGICAL IMPLANTS OR AS CRITICAL COMPONENTS IN
ANY LIFE SUPPORT SYSTEMS WHOSE FAILURE TO PERFORM CAN REASONABLY BE EXPECTED TO CAUSE SIGNIFICANT
INJURY TO A HUMAN.

(2) IN ANY APPLICATION, INCLUDING THE ABOVE, RELIABILITY OF OPERATION OF THE SOFTWARE PRODUCTS CAN BE
IMPAIRED BY ADVERSE FACTORS, INCLUDING BUT NOT LIMITED TO FLUCTUATIONS IN ELECTRICAL POWER SUPPLY,
COMPUTER HARDWARE MALFUNCTIONS, COMPUTER OPERATING SYSTEM SOFTWARE FITNESS, FITNESS OF COMPILERS
AND DEVELOPMENT SOFTWARE USED TO DEVELOP AN APPLICATION, INSTALLATION ERRORS, SOFTWARE AND
HARDWARE COMPATIBILITY PROBLEMS, MALFUNCTIONS OR FAILURES OF ELECTRONIC MONITORING OR CONTROL
DEVICES, TRANSIENT FAILURES OF ELECTRONIC SYSTEMS (HARDWARE AND/OR SOFTWARE), UNANTICIPATED USES OR
MISUSES, OR ERRORS ON THE PART OF THE USER OR APPLICATIONS DESIGNER (ADVERSE FACTORS SUCH AS THESE ARE
HEREAFTER COLLECTIVELY TERMED “SYSTEM FAILURES”). ANY APPLICATION WHERE A SYSTEM FAILURE WOULD
CREATE A RISK OF HARM TO PROPERTY OR PERSONS (INCLUDING THE RISK OF BODILY INJURY AND DEATH) SHOULD
NOT BE RELIANT SOLELY UPON ONE FORM OF ELECTRONIC SYSTEM DUE TO THE RISK OF SYSTEM FAILURE. TO AVOID
DAMAGE, INJURY, OR DEATH, THE USER OR APPLICATION DESIGNER MUST TAKE REASONABLY PRUDENT STEPS TO
PROTECT AGAINST SYSTEM FAILURES, INCLUDING BUT NOT LIMITED TO BACK-UP OR SHUT DOWN MECHANISMS.
BECAUSE EACH END-USER SYSTEM IS CUSTOMIZED AND DIFFERS FROM NATIONAL INSTRUMENTS' TESTING
PLATFORMS AND BECAUSE A USER OR APPLICATION DESIGNER MAY USE NATIONAL INSTRUMENTS PRODUCTS IN
COMBINATION WITH OTHER PRODUCTS IN A MANNER NOT EVALUATED OR CONTEMPLATED BY NATIONAL
INSTRUMENTS, THE USER OR APPLICATION DESIGNER IS ULTIMATELY RESPONSIBLE FOR VERIFYING AND VALIDATING
THE SUITABILITY OF NATIONAL INSTRUMENTS PRODUCTS WHENEVER NATIONAL INSTRUMENTS PRODUCTS ARE
INCORPORATED IN A SYSTEM OR APPLICATION, INCLUDING, WITHOUT LIMITATION, THE APPROPRIATE DESIGN,
PROCESS AND SAFETY LEVEL OF SUCH SYSTEM OR APPLICATION.

© National Instruments Corporation v FPGA Module User Manual

Contents

About This Manual
Conventions ... ix

Related Documentation..x

Chapter 1
Introduction

Custom Hardware from LabVIEW..1-1

Additional Advantages of the FPGA Module..1-2

FPGA Module Application Development ...1-2

Execution Targets..1-2

Execution of FPGA VIs...1-3

Communication with FPGA VIs ...1-3

Interactive Front Panel Communication ...1-3

Programmatic FPGA Interface Communication...............................1-5

FPGA Module Examples ...1-7

Chapter 2
Creating FPGA VIs

Targeting FPGA Devices...2-1

Utilizing FPGA Space ...2-1

Performing Basic I/O ...2-2

Analog I/O ...2-3

Analog Input ...2-3

Analog Output...2-3

Digital I/O..2-4

Timing FPGA VIs..2-5

Creating Timed I/O Applications ..2-5

Creating Delays between Events ...2-6

Measuring Time between Events ..2-6

Customizing I/O...2-7

Creating Triggers...2-8

Creating Counters..2-9

Using Parallel Operations ..2-11

Parallel Operations on the FPGA ..2-11

SubVIs on the FPGA...2-13

Understanding How to Program FPGA VIs ..2-14

Restricted and Unavailable VIs and Functions ...2-14

Mathematical Operations...2-15

Contents

FPGA Module User Manual vi ni.com

Arrays.. 2-16

Memory... 2-16

Controlling I/O Power-On States .. 2-16

Communicating with a Host VI... 2-18

Interrupt-Based Communication... 2-18

Chapter 3
Managing Shared Resources

Resource Contention and Arbitration.. 3-1

Arbitration Options.. 3-3

Normal .. 3-3

Normal (Optimize for Single Accessor) ... 3-3

None .. 3-4

Available Arbitration Options for Specific Resources 3-4

Jitter ... 3-5

Timing ... 3-6

FPGA Utilization... 3-7

Chapter 4
Running FPGA VIs

Compiling FPGA VIs .. 4-1

Compiling FPGA VIs Using the LabVIEW FPGA Compile Server 4-2

Compiling on a Remote Computer ... 4-2

Managing Compilation Files... 4-3

Using Compiled FPGA VI Options... 4-3

Changing the FPGA Device Clock Rate... 4-3

Configuring FPGA VIs to Run Automatically ... 4-4

Downloading FPGA VIs to the FPGA Device.. 4-4

Running FPGA VIs ... 4-4

Running FPGA VIs at Power On .. 4-5

Setting Target Configurations ... 4-5

Chapter 5
Communicating with FPGA VIs

Establishing Communication with the FPGA VI .. 5-1

Selecting the FPGA VI ... 5-1

Selecting the FPGA Device .. 5-2

Setting Open and Run Options.. 5-2

Reading and Writing Data to the FPGA VI... 5-3

Contents

© National Instruments Corporation vii FPGA Module User Manual

Responding to FPGA VI Interrupts ...5-4

Waiting for Interrupts ..5-4

Acknowledging Interrupts ...5-4

Closing a Reference to the FPGA VI...5-5

Chapter 6
Debugging FPGA VIs

Testing a VI Before Compiling ...6-1

Building Debugging into an FPGA VI ..6-2

Adding Indicators ..6-2

Adding I/O...6-2

Appendix A
Technical Support and Professional Services

Glossary

© National Instruments Corporation ix FPGA Module User Manual

About This Manual

This manual describes the LabVIEW FPGA Module software and

techniques for building applications in LabVIEW with the FPGA Module.

Use this manual to learn about FPGA Module programming features to

help you build VIs that run on National Instruments Reconfigurable I/O

(RIO) devices and VIs to communicate with RIO devices.

If you are not using the FPGA Module, refer to Chapter 5, Communicating

with FPGA VIs, for information about communicating with the FPGA

device.

Conventions

The following conventions appear in this manual:

» The » symbol leads you through nested menu items and dialog box options

to a final action. The sequence File»Page Setup»Options directs you to

pull down the File menu, select the Page Setup item, and select Options

from the last dialog box.

This icon denotes a tip, which alerts you to advisory information.

This icon denotes a note, which alerts you to important information.

bold Bold text denotes items that you must select or click in the software, such

as menu items and dialog box options. Bold text also denotes parameter

names and palette names.

italic Italic text denotes variables, emphasis, a cross reference, or an introduction

to a key concept. This font also denotes text that is a placeholder for a word

or value that you must supply.

monospace Text in this font denotes text or characters that you should enter from the

keyboard, sections of code, programming examples, and syntax examples.

This font is also used for the proper names of disk drives, paths, directories,

programs, subprograms, subroutines, device names, functions, operations,

variables, filenames and extensions, and code excerpts.

About This Manual

FPGA Module User Manual x ni.com

Related Documentation

The following documents contain information that you might find helpful

as you read this manual:

• LabVIEW User Manual

• LabVIEW Help, available by selecting Help»VI, Function, &

How-To Help

• LabVIEW FPGA Module Release Notes

• Where to Start with the NI PXI-7831R

• NI PXI-7831R User Manual

• LabVIEW Real-Time Module User Manual

© National Instruments Corporation 1-1 FPGA Module User Manual

1
Introduction

With the LabVIEW FPGA Module and LabVIEW, you can create VIs

that run on National Instruments Reconfigurable I/O (RIO) devices.

Reconfigurable I/O devices, also known as FPGA devices, contain a

reconfigurable FPGA (Field-Programmable Gate Array) surrounded by

fixed I/O resources. Depending on the specific FPGA device, fixed I/O

resources can include analog and digital resources—such as

analog-to-digital converters (ADCs) and digital-to-analog converters

(DACs)—that you can control from the FPGA.

With the FPGA Module, you configure the behavior of the reconfigurable

FPGA to match the requirements of a specific measurement and control

system. The VI you create to run on a FPGA device is called the FPGA VI.

Use the FPGA Module to write FPGA VIs. When you download the FPGA

VI to the FPGA, you are programming the functionality of the FPGA

device. Each new FPGA VI you create and download is a custom timing,

triggering, and I/O solution.

Custom Hardware from LabVIEW

When standard hardware did not meet your requirements for a specific

application prior to the FPGA Module, you had to create a custom

hardware design using low-level hardware description languages. With the

FPGA Module, you do not need to know a hardware description language

to design a specific hardware solution—you just need LabVIEW. With the

FPGA Module, you can design and rapidly develop hardware components

with the power of LabVIEW graphical programming.

The FPGA Module is ideal for programming applications that require

functionality such as the following:

• Custom I/O—Modified digital and analog lines with custom counters,

encoders, and pulse width modulators (PWMs)

• On-board decision making—Control, digital filtering, and Boolean

decisions

• Resource synchronization—Precise timing of FPGA device

resources, such as analog input (AI), analog output (AO), digital input

Chapter 1 Introduction

FPGA Module User Manual 1-2 ni.com

and output (DIO), counters, and PWMs, as well as synchronization

among multiple devices

Additional Advantages of the FPGA Module

The FPGA Module expands the functionality of LabVIEW solutions. For

example, you can design FPGA VIs that allow the FPGA device to operate

independently of the rest of the system. You can create robust FPGA VIs

that use the ability to operate independently and continue to run even if the

host computer—the computer that controls and monitors the FPGA

device—crashes. Furthermore, you can design the FPGA VI to store data

on the FPGA until the host computer can retrieve the data.

Another advantage of the FPGA Module is parallel execution of block

diagram operations in an FPGA VI. Portions of the block diagram that do

not depend on other portions execute in parallel on the FPGA device. For

example, multiple independent While Loops on a block diagram each have

independent portions of hardware. Therefore, the multiple independent

While Loops run simultaneously on the FPGA device.

FPGA Module Application Development

FPGA Module applications range from a single FPGA VI running on a

FPGA device to large LabVIEW solutions that include multiple FPGA

devices, the LabVIEW Real-Time Module, and LabVIEW for Windows.

In any case, you need to create the FPGA VI that runs on the FPGA device.

To create an FPGA VI, first select the FPGA device as the execution target

in LabVIEW. An execution target is any location—including FPGA

devices, RT targets, or the development computer—on which you can run

a VI.

Execution Targets
By default, LabVIEW selects the development computer as the execution

target. You must change the execution target to access the FPGA Module

palettes, VIs, functions, and development tools. To change the execution

target from the LabVIEW dialog box, select an FPGA device from the

Execution Target pull-down menu. Even if the target device is not present,

you still can target the FPGA device to develop an FPGA VI. If you are

currently working on a VI and you want to change the execution target, you

can select Operate»Switch Execution Target to set the execution target.

Chapter 1 Introduction

© National Instruments Corporation 1-3 FPGA Module User Manual

Refer to Chapter 2, Creating FPGA VIs, for information about good

programming techniques and the VIs, functions, and tools in the FPGA

Module that you need to create efficient FPGA VIs.

Execution of FPGA VIs
After you create an FPGA VI with the FPGA Module VIs, functions, and

tools, use LabVIEW to compile and download the FPGA VI to the FPGA

device. As you do with any other VI, click the Run button to automatically

compile, download, and run the FPGA VI on the execution target, which in

this case is the FPGA device. Refer to Chapter 4, Running FPGA VIs, for

information about compiling, downloading, and running FPGA VIs on the

FPGA device.

Communication with FPGA VIs
After you have an FPGA VI running on the FPGA device, you need a way

to communicate with that VI. Depending on the application requirements,

you can communicate with the FPGA VI interactively or

programmatically. Use Interactive Front Panel Communication to

communicate with the FPGA VI directly from the front panel of the FPGA

VI. Use Programmatic FPGA Interface Communication to communicate

with the FPGA VI from a VI running on the host computer. The VI running

on the host computer is called the host VI.

Interactive Front Panel Communication
Use Interactive Front Panel Communication to communicate with an

FPGA VI running on an FPGA device with no additional programming.

With Interactive Front Panel Communication, the host computer displays

the FPGA VI front panel and the FPGA device executes the FPGA VI block

diagram, as shown in Figure 1-1.

Chapter 1 Introduction

FPGA Module User Manual 1-4 ni.com

Figure 1-1. Interactive Front Panel Communication

The LabVIEW front panel communicates with the FPGA device block

diagram to exchange the state of the controls and indicators. You can

communicate with an FPGA device located in the host computer or with an

FPGA device located in a remote system. As the FPGA device block

diagram continues to run, the host computer updates values on the FPGA

VI front panel as often as possible. The execution rate of the FPGA VI is

not affected by the host computer updates to the controls and indicators.

Use Interactive Front Panel Communication between the FPGA device and

the host computer to control and test VIs running on the FPGA device.

After downloading and running the FPGA VI, keep LabVIEW open on the

host computer to display and interact with the front panel of the FPGA VI.

During Interactive Front Panel Communication, you cannot use LabVIEW

debugging tools—including probes, execution highlighting, breakpoints,

and single-stepping. To identify errors before you compile, download, and

FPGA VI
Front Panel

Host Computer FPGA Device

FPGA VI
Block Diagram

Chapter 1 Introduction

© National Instruments Corporation 1-5 FPGA Module User Manual

run the FPGA VI on the FPGA device, test the FPGA VI by targeting an

FPGA device emulator. An emulator is an execution target that simulates

the behavior of the FPGA VI running on the FPGA device. Refer to

Chapter 6, Debugging FPGA VIs, for more information about testing

FPGA VIs with emulators.

Programmatic FPGA Interface Communication
With Programmatic FPGA Interface Communication, you

programmatically monitor and control an FPGA VI with a separate host VI

running on the host computer. You might write a host VI to send

information between the host computer and the FPGA device for the

following reasons:

• You want to do more data processing than you can fit on the FPGA.

• You need to perform operations not available on the FPGA device,

such as floating-point arithmetic.

• You want to create a multi-tiered application with the FPGA device as

a component of a larger system.

• You want to log data.

• You want to run multiple VIs on the host computer. You cannot use

LabVIEW on the host computer for any other task when you target an

FPGA device or RT target while using Interactive Front Panel

Communication.

• You want to control the timing and sequencing of data transfer.

• You want to control which components are visible on the front panel

because some controls and indicators might be more important for

communication than others.

When you use Programmatic FPGA Interface Communication, the FPGA

VI runs on the FPGA device, and the host VI runs on the host computer, as

shown in Figure 1-2. Use the FPGA Interface functions available when you

target LabVIEW for Windows or an RT target to create a host VI that

communicates with the FPGA VI and performs other required functions.

Refer to Chapter 5, Communicating with FPGA VIs, for information about

creating host VIs.

Chapter 1 Introduction

FPGA Module User Manual 1-6 ni.com

Figure 1-2. Programmatic FPGA Interface Communication

You also can use an RT target as the host computer. The RT target can use

Programmatic FPGA Interface Communication to communicate with the

FPGA device. You then can use a Windows computer to communicate with

the RT target. The flexibility of FPGA devices integrates well with

LabVIEW Real-Time Module applications, such as control and

hardware-in-the-loop simulations, which require a significant amount of

determinism.

Host VI

Host Computer FPGA Device

FPGA VI

Chapter 1 Introduction

© National Instruments Corporation 1-7 FPGA Module User Manual

FPGA Module Examples

The FPGA Module includes example FPGA VIs and example host VIs

located in the examples\FPGA directory. The FPGA Module examples are

divided into categories such as Getting Started, Timing and Triggering,

Counters, and so on. The FPGA Module also includes VI templates to help

you create specific FPGA VI solutions.

Begin with the Getting Started examples to learn about simplified functions

based on actual application VIs. The Getting Started examples highlight

key concepts, such as communication between the host VI and the FPGA

VI as well as simplified timing, triggering, and data transfer. Continue

through the other categories of FPGA Module examples for more detailed

information.

Select Help»Find Examples to search the development computer and

ni.com for FPGA Module examples.

© National Instruments Corporation 2-1 FPGA Module User Manual

2
Creating FPGA VIs

This chapter describes how to create an FPGA VI for an FPGA device.

You will learn how to perform common tasks such as I/O, timing, and

triggering, as well as more advanced tasks such as using parallel

operations.

Targeting FPGA Devices

The LabVIEW FPGA Module provides the same graphical programming

environment for the creation of FPGA VIs as LabVIEW does for standard

VIs. The LabVIEW graphical programming environment includes front

panels and block diagrams, powerful editing tools, and a wide range of

included functions.

When you target LabVIEW to an FPGA device, you have access only to the

LabVIEW VIs and functions that make sense on the FPGA device. For

example, a typical FPGA device does not have access to a disk drive, so File

I/O functions are not available on the Functions palette when you target

that device. The LabVIEW VIs and functions available when you target an

FPGA device have the same behavior and functionality in FPGA VIs as in

VIs created for Windows. In addition to the subset of the standard

LabVIEW VIs and functions, the FPGA Module provides FPGA

device-specific VIs and functions. Refer to the LabVIEW Help, available by

selecting Help»VI, Function, & How-To Help, for information about

FPGA Device I/O functions and VIs.

Tip You can identify FPGA Device I/O functions on the palettes by their purple borders.

Utilizing FPGA Space

Every function or VI you place on the block diagram of an FPGA VI uses

a certain number of logic cells on the FPGA. The FPGA on the FPGA

device has a fixed number of logic cells. If the FPGA VI design exceeds the

number of available logic cells, you must reduce the number of logic cells

the FPGA VI uses on the FPGA. This manual contains information

throughout to help you minimize the size of FPGA VIs.

Chapter 2 Creating FPGA VIs

FPGA Module User Manual 2-2 ni.com

When you compile the VI, LabVIEW displays a Compile Report of the

FPGA usage. Refer to Chapter 4, Running FPGA VIs, for more

information.

Performing Basic I/O

The FPGA Device I/O functions correspond to the fixed I/O resources on

the FPGA device. Fixed resources can include analog input, digital output,

and so on. When the FPGA VI runs on the FPGA device, it performs the

I/O operations in hardware. For example, the Analog Input function

initiates a conversion on the analog-to-digital converter (ADC) and returns

the result to the FPGA VI. Because FPGA VIs run directly on the FPGA,

you do not need driver calls or experience software delays.

Each FPGA Device I/O function corresponds to a specific type of fixed I/O

resource. An FPGA device might include multiple I/O resources of the

same type. Each individual I/O resource is a terminal on the FPGA device.

You can configure the FPGA Device I/O functions to read or write to as

many terminals as are available on the FPGA device. For example, you can

use the Analog Input function to read the data input on any of the analog

input terminals on the FPGA device.

Complete the following steps to configure an FPGA Device I/O function.

1. Place the appropriate FPGA Device I/O function on the block diagram.

The FPGA Module offers functions for analog input and output, digital

input and output, and digital port input and output.

2. Double-click or right-click the function on the block diagram and

select Properties from the shortcut menu.

Notice that the Configure dialog box contains one fixed I/O resource

in the Preview listbox.

3. Select an available fixed I/O resource with which you want to associate

inputs or outputs from the Terminal listbox on the General

Configuration page.

Refer to the hardware documentation for information about terminals

and their connector assignments.

4. Type a name in the Alias field to specify an Alias for the fixed I/O

resource. LabVIEW uses the terminal name as the default Alias.

Chapter 2 Creating FPGA VIs

© National Instruments Corporation 2-3 FPGA Module User Manual

5. To associate more inputs or outputs with a fixed I/O resource, click the

Add Input or Add Output button and configure the fixed I/O resource

as you did in the previous step.

6. Click the OK button to save the I/O configuration and close the

Configure dialog box.

Analog I/O

Analog Input
The Analog Input function initiates a conversion, waits for the result, then

returns the binary representation of the voltage as a 16-bit signed integer.

Typically you create the FPGA VI to use the binary representation for

operations within the FPGA VI. You also can pass the binary

representation back to the host VI and convert the binary representation

back to a voltage.

The equation you use to convert the binary representation back to an actual

voltage depends on the specific FPGA device. Refer to the hardware

documentation for more information. For example, with an NI PXI-7831R

device, use the following equation to convert the binary representation to

voltage:

Note Avoid executing this calculation in the FPGA VI because the FPGA only supports

integer operations. Also, performing the equation on the FPGA uses additional space on

the FPGA. Refer to the Mathematical Operations section for more information.

Analog Output
The Analog Output function writes the binary representation of the voltage

as a 16-bit signed integer to the digital-to-analog converter (DAC), which

sets the analog output voltage. You can generate voltage information in two

sources—the host VI or the FPGA VI. Typically the host VI converts the

voltage to a signed 16-bit binary representation before writing the value to

the FPGA VI. If the FPGA VI determines the voltage, typically the

FPGA VI performs the calculations using 16-bit binary representations.

In both cases, the DAC passes the binary representation out as a voltage.

Input Voltage
Binary Code

32768
---------------------------------- 10.0 V×=

Chapter 2 Creating FPGA VIs

FPGA Module User Manual 2-4 ni.com

The equation you use to convert a voltage to a binary representation

depends on the specific FPGA device. Refer to the hardware

documentation for more information. For example, with an NI PXI-7831R

device, use the following equation to convert the voltage to the binary

representation:

Note Avoid executing this calculation in the FPGA VI because the FPGA only supports

integer operations. Also, performing the equation on the FPGA uses additional space on

the FPGA.

Digital I/O
You can treat digital resources as individual lines or as predefined groups

of eight digital lines, also known as ports. A terminal is either an individual

digital line or a digital port depending on which FPGA Device I/O function

you use. You can perform both digital input and digital output on any

digital terminal. Refer to the LabVIEW Help, available by selecting

Help»VI, Function, & How-To Help, for information about specific

FPGA Device I/O functions and port assignments.

Use the Digital Input and Digital Port Input functions to read the state of a

digital terminal. The state of the digital terminal is commonly determined

by an external signal, such as the output generated by an external device.

Use the Digital Output and Digital Port Output functions to set the state of

a digital terminal or port. You can use the Digital Input functions to verify

the state of the same terminal to which the Digital Output function writes.

Note If you have used a terminal for output, you must use the Digital Enable or Digital

Port Enable function to disable the terminal for output before the Digital Input function can

read the state of an external signal.

The Digital Output and Digital Port Output functions both write the data

and enable the terminal for output. You also can use the Digital Data and

Digital Port Data functions, which write data to a terminal but do not enable

the output. Use the Digital Enable and Digital Port Enable functions to

enable the digital terminal, which allows the data to be driven out. For

example, you might have one portion of the block diagram continuously

generating an internal signal. Use a Digital Enable or Digital Port Enable

function in another portion of the block diagram to independently control

when the internal signal is actually driven out to an external device.

Binary Code
Output Voltage 32768×

10.0 V
--=

Chapter 2 Creating FPGA VIs

© National Instruments Corporation 2-5 FPGA Module User Manual

Timing FPGA VIs

Every VI or function you place in an FPGA VI takes a certain amount of

time to execute. You can allow operations to occur at the rate determined

by the dataflow without additional programming. If you want to control or

measure the execution timing, use the Time & Dialog VIs. You also can use

the Time & Dialog VIs to create custom I/O such as counters and triggers.

Creating Timed I/O Applications
Applications often require the I/O to execute at a specific frequency. For

example, the algorithms used in control loops typically require the inputs

to be sampled at a known rate. Use the Loop Timer VI in a While Loop to

control the execution rate of the I/O, as shown in Figure 2-1.

Figure 2-1. Controlling Execution Rate with the Loop Timer VI

To use the Loop Timer VI to control the execution rate of the I/O, place a

sequence structure inside a While Loop. Place the Loop Timer VI in the

first frame of the sequence structure. Configure the Counter Units and Size

of Internal Counter in the Configure Loop Timer dialog box that

appears. Place the LabVIEW code for the I/O in subsequent frames of the

sequence structure.

Tip You can save space on the FPGA device by choosing the smallest Size of Internal

Counter you can use for the application.

The I/O executes at the rate specified by the Count parameter of the Loop

Timer VI. You can use the Timed Loop VI template to quickly create an

FPGA VI that uses the Loop Timer VI.

The first call of the Loop Timer VI does not result in any wait or delay

because it establishes a reference time stamp for subsequent calls. After the

Chapter 2 Creating FPGA VIs

FPGA Module User Manual 2-6 ni.com

first call of the Loop Timer VI, subsequent calls of the Loop Timer VI do

not return until the time specified by the Count parameter has elapsed since

the previous call. If the time specified by the Count parameter is less than

the time it takes the FPGA device to execute the code in the While Loop,

the Loop Timer VI returns immediately and establishes a new reference

time stamp for subsequent calls.

Refer to the LabVIEW Help, available by selecting Help»VI, Function, &

How-To Help, for more information about the Loop Timer VI.

Creating Delays between Events
Use the Wait VI to create a delay between events in an FPGA VI.

For example, you might want to create a delay between a trigger and a

subsequent output. You can place the LabVIEW code for the trigger in the

first frame of a sequence structure. Then place the Wait VI in the following

frame. Finally, place the LabVIEW code for the output in the last frame of

the sequence structure. You also can create a series of delays using multiple

Wait VIs in a sequence structure, as shown in Figure 2-2.

Figure 2-2. Using Wait VIs for a Series of Delays

Measuring Time between Events
Use the Tick Count VI to measure the time between events such as edges

on a digital signal. You can use the Tick Count VI when you need to

determine the period, pulse-width, or frequency of an input signal or if you

want to determine the execution time of a section of LabVIEW code.

For example, each function or VI in an FPGA VI takes a certain amount of

time to execute. To determine the amount of time it takes a function or a

section of LabVIEW code to execute, use a sequence structure with two

Tick Count VIs, as shown in Figure 2-3.

Chapter 2 Creating FPGA VIs

© National Instruments Corporation 2-7 FPGA Module User Manual

Figure 2-3. Measuring Execution Time with the Tick Count VI

Place one Tick Count VI in the first frame of the sequence structure. Then

place the LabVIEW code you want to measure in the second frame of the

sequence structure. Finally, place the other Tick Count VI in the last frame

of the sequence structure. You then can calculate the difference between the

results of the two Tick Count VIs to determine the execution time.

The Tick Count VI has an internal counter to track time. The internal

counter for each Tick Count VI you place on the same block diagram shares

the same start time. Therefore, every Tick Count VI that uses the same

values for the Counter Units and Size of Internal Counter options tracks

the same time. For example, if two Tick Count VIs that use the same

Configure Tick Count options are called simultaneously, they return the

same Tick Count value.

The Tick Count value returned by the Tick Count VI is in integer values of

Counter Units. The Tick Count value cannot represent any fractional time

periods that may occur when Counter Units is configured for uSec or

mSec. This can result in timing measurements that have an accuracy of ±1

Counter Unit value. For example, the Tick Count VIs in Figure 2-3 can be

configured to measure time in milliseconds. If the first Tick Count VI

executes at 47.9 milliseconds, Tick Count returns a value of 47. If the

second Tick Count VI executes at 53.2 milliseconds, Tick Count returns

a value of 53. Although this example has a 5.3 milliseconds delay, the

difference between the returned values is 6 milliseconds.

Customizing I/O

The FPGA Module includes functions for performing basic I/O. However,

you might have applications that require more advanced or custom I/O

functionality. Use the FPGA Device I/O functions as building blocks to

create customized I/O functionality such as triggering and counters.

Chapter 2 Creating FPGA VIs

FPGA Module User Manual 2-8 ni.com

Creating Triggers
In many applications, you might need to wait for a trigger before

performing an action. You can wait for a trigger on a single digital input

using the Wait on Edge or Level function. This function waits until the

specified condition is met on the digital input before continuing. Place the

Wait on Edge or Level function in the first frame of a sequence structure

and place the LabVIEW code for the task in the following frame, as shown

in Figure 2-4.

Figure 2-4. Creating a Trigger with the Wait on Edge or Level Function

You also can create more advanced triggering events from the FPGA

Device I/O functions. For example, you might need an application that

triggers only when multiple digital lines match a given condition, as shown

in Figure 2-5.

Figure 2-5. Triggering when Multiple Digital Lines Match a Condition

You can place the Digital Input function in a While Loop and exit the While

Loop only when the digital inputs match the trigger pattern. Place the

While Loop in the first frame of a sequence structure, just as you did for the

Wait on Edge or Level function in the previous example.

You can implement analog triggers in the same manner. Place an Analog

Input function and a Comparison function in a While Loop to trigger when

the analog input value exceeds a programmable threshold.

Chapter 2 Creating FPGA VIs

© National Instruments Corporation 2-9 FPGA Module User Manual

Creating Counters
Counters can range from simple event counters to complex signal

measurement with multiple inputs and outputs. You can build a simple

event counter with the Wait on Edge or Level function in a While Loop.

For example, you can use the Wait on Edge or Level function to wait for

a rising edge to occur on a digital input terminal, as shown in Figure 2-6.

Figure 2-6. Counting Rising Edges

When the Wait on Edge or Level function detects an edge, the block

diagram increments the counter value and stores the counter value in a shift

register on the While Loop. You can use an indicator to view the counter

value either on the front panel or by a local variable.

You also can build more advanced counters from the FPGA Device I/O

functions. For example, an application might require a counter with

independent count up, count down, and gate inputs and an output, as shown

in Figure 2-7.

Chapter 2 Creating FPGA VIs

FPGA Module User Manual 2-10 ni.com

Figure 2-7. Building More Advanced Counters

In Figure 2-7, the counter value increments when a rising edge occurs on

count up, the counter value decrements when a rising edge occurs on count

down, and the gate prevents count up and count down from changing the

counter value when the gate is high. The output gets asserted when the

counter value is a multiple of four. You can make simple Boolean decisions

in LabVIEW code to determine if the counter counts up, down, or stays the

same. You also can make simple mathematical decisions in LabVIEW code

to determine when the output asserts.

You also can make measurements on input signals, as shown in Figure 2-8.

For example, you might need to measure the period of an input signal.

You can place the Wait on Edge or Level function in the first frame of a

sequence structure followed by the Tick Count VI in the second frame of

the sequence structure. Then place the sequence structure in a While Loop.

Store the current value returned by Tick Count in a shift register to create

the previous value for the next iteration of the While Loop. Then subtract

the previous time from the current time to determine the period of the input

signal.

Chapter 2 Creating FPGA VIs

© National Instruments Corporation 2-11 FPGA Module User Manual

Figure 2-8. Measuring the Period of an Input Signal

Using Parallel Operations

As a fundamental part of the LabVIEW environment, LabVIEW allows

you to create VIs that include parallel operations. When the VI executes on

a processor-based target such as Windows, LabVIEW imitates parallel

operation by serially executing portions of the block diagram. In FPGA

VIs, parallel operations execute simultaneously on the FPGA device

because the FPGA Module creates dedicated hardware for each

independent VI or function in the FPGA VI.

Parallel Operations on the FPGA
Parallel operations on the FPGA typically increase determinism and

execution rate when compared to a processor-based target. Because the

parallel operations no longer contend over a common resource, such as the

processor used by LabVIEW for Windows, you increase determinism.

Because the overall execution time of multiple operations, with dedicated

hardware for each operation, is the execution time of the slowest operation,

you increase execution rate. With a single hardware resource, the overall

execution time for multiple operations is the sum of the execution times.

To create parallel operations, use multiple independent While Loops on a

single block diagram. For example, you can implement multiple data

acquisition engines, each with an independent sampling rate, as shown in

Figure 2-9.

Chapter 2 Creating FPGA VIs

FPGA Module User Manual 2-12 ni.com

Figure 2-9. Implementing Multiple Data Acquisition Engines

You can use independent sampling rates to more efficiently acquire data in

systems that contain both high frequency and low frequency signals.

Configure one data acquisition engine with a fast sampling rate to measure

a high frequency signal, such as audio signals. Configure the other data

acquisition engine with a slower sampling rate to measure a low frequency

signal, such as temperature.

If you use shared resources among parallel operations, you might lose the

benefits of determinism and a higher execution rate. Possible shared

resources include digital output lines, analog lines, memory blocks, the

interrupt line, front panel controls, local variables, and non-reentrant

subVIs. Refer to Chapter 3, Managing Shared Resources, for information

about shared resources.

Tip Each parallel operation uses a certain amount of space on the FPGA. If you begin to

run out of space on the FPGA and have identical parallel operations, you might save space

by creating a subVI for the operation and making it non-reentrant. However, you lose

parallel execution by creating a non-reentrant subVI for the operation.

Chapter 2 Creating FPGA VIs

© National Instruments Corporation 2-13 FPGA Module User Manual

SubVIs on the FPGA
LabVIEW allows you to encapsulate common sections of code as subVIs

to facilitate its reuse on the block diagram. You can configure the subVI as

a single instance shared among multiple callers, also known as a

non-reentrant VI. You also can configure the subVI to replicate itself for

each caller, also known as a reentrant VI. By default, LabVIEW subVIs are

non-reentrant VIs. You can change the subVI to be a reentrant VI in the

subVI VI Properties dialog box. Select Execution from the Category

pull-down menu and place a checkmark in the Reentrant Execution

checkbox.

If you use a non-reentrant subVI in an FPGA VI, only a single copy of the

subVI becomes hardware and all callers share the hardware resource. If you

use a reentrant subVI in an FPGA VI, each call of the subVI generates a

dedicated hardware resource. For example, if you have five instances of an

event counter configured as a reentrant subVI on the block diagram,

LabVIEW implements five independent copies of the event counter

hardware on the FPGA.

Be careful not to use shared resources in reentrant subVIs when you want

to have dedicated hardware for each copy of the subVI. If you use any

shared resource in a reentrant subVI, only one copy of the shared resource

exists in hardware. Each reentrant subVI must use arbitration to access the

shared resource. Refer to Chapter 3, Managing Shared Resources, for

information about shared resources.

Although non-reentrant subVIs typically consume less space in the FPGA

VI, the FPGA VI might run slower because it shares resources on the

FPGA. Reentrant VIs typically consume more space in the FPGA VI,

but the FPGA VI might run faster without shared resources. Table 2-1

summarizes the typical advantages and disadvantages of non-reentrant and

reentrant subVIs.

Chapter 2 Creating FPGA VIs

FPGA Module User Manual 2-14 ni.com

Understanding How to Program FPGA VIs

In addition to providing the I/O capabilities, the FPGA Module enables you

to use the LabVIEW functions and VIs appropriate for FPGA devices.

Restricted and Unavailable VIs and Functions
Some LabVIEW functions and VIs are not available or have restrictions in

FPGA VIs.

The following functions are not available for FPGA VIs:

• Floating-point functions

• Variable-size and multi-dimensional arrays

• Error clusters or strings

• Analyze VIs

• ActiveX

• Dialog boxes

• File I/O

• Printing

• Programmatic menus

• VI Server

• Property Nodes

Other LabVIEW features might not be supported depending on the FPGA

device.

Table 2-1. Non-Reentrant versus Reentrant SubVIs

VI Type FPGA Speed FPGA Utilization

Non-reentrant Slower—Each call to

the subVI waits until

the previous call ends.

Lower—Only one

instance of the subVI

exists on the FPGA no

matter how many times it

is used.

Reentrant Faster—Multiple calls

to the same subVI run

in parallel.

Higher—Each instance of

the subVI on the block

diagram uses space on the

FPGA.

Chapter 2 Creating FPGA VIs

© National Instruments Corporation 2-15 FPGA Module User Manual

Mathematical Operations
The FPGA Module restricts the use of mathematical operations in FPGA

VIs to integer numeric data types. You can perform integer math using the

Numeric functions. You cannot use floating point operations in FPGA VIs.

Integer overflow occurs when the result of a mathematical operation

exceeds the range of the output data type. For example, the range of a

U8 integer is 0 to 255. Adding two U8 integers together that have a result

greater than 255 results in overflow, such as 200 + 70. When overflow

occurs the result rolls over the limit of the range and the modulo of the

range is returned. For example, a result of 270 for a U8 integer rolls over

255 and returns as 14.

You can take advantage of the rollover behavior that occurs with overflow

in some applications. For example, the execution time measurement in

Figure 2-3 relies on the rollover behavior of overflow for proper operation.

Suppose the Tick Count VIs are configured with an 8 bit Size of Internal

Counter and milliseconds for Counter Units. When the internal counter

of the Tick Count VI reaches 255 ms it rolls over to 0. If the first Tick Count

VI returns a Tick Count of 132 ms and the execution time of the LabVIEW

code to be measured takes 140 ms, the internal counter has rolled over and

the second Tick Count VI returns a Tick Count value of 16 ms. When the

block diagram subtracts 132 from 16, overflow occurs and results in the

value of 140.

Note The Tick Count VI takes a single cycle to execute. In this example, if you set

Counter Units as Ticks instead of mSec, the returned result from the subtraction is 141

even though the LabVIEW code in the middle sequence takes only 140 ticks to execute.

If you want to avoid overflow, you have two options—using larger data

types and using the Saturation Arithmetic VIs. You might avoid data

overflow with a larger data type, but larger data types consume more space

on the FPGA.

Tip Use the smallest data type possible in FPGA VIs to minimize space used on the

FPGA.

You also can use the Saturation Arithmetic VIs to handle signed integer

overflow. Refer to the LabVIEW Help, available by selecting Help»VI,

Function, & How-To Help, for information about the Saturation

Arithmetic VIs.

Chapter 2 Creating FPGA VIs

FPGA Module User Manual 2-16 ni.com

Arrays
You can use only fixed-size, one-dimensional arrays in FPGA VIs.

You can make any array constant, control, or indicator fixed-size by

right-clicking the array index and selecting Set Dimension Size from the

shortcut menu.

You cannot use an array function that returns a variable-size array.

However, if you use appropriate constants with many array functions,

the resulting array is fixed-size. For example, if you use the Array Subset

function, you must wire constants to the index and length parameters so

that the resulting subarray is fixed-size.

Tip Arrays consume significant amounts of space on the FPGA. To optimize compile

time, avoid using arrays larger than 32 elements.

Memory
You can use FPGA memory for data storage in the FPGA VI. You access

the FPGA memory using the Memory Read and Memory Write VIs

available with the FPGA Module. You can use these VIs to perform basic

read and write operations to the FPGA memory, and as building blocks to

create more advanced memory functions such as FIFOs, dual ported

memory, look-up tables, and so on.

You can create look-up tables with constant or variable entries in FPGA

VIs. You can use fixed-size arrays for smaller look-up tables with variable

entries. You can use constant fixed-size arrays when the look-up table

entries do not need to change and you want to limit FPGA usage. For larger

look-up tables, use the Memory Read and Memory Write VIs available

with the FPGA Module to create look-up tables with variable entries in the

FPGA memory.

Controlling I/O Power-On States

An application might require that the I/O on the FPGA device be set to a

known value when the system powers on. For example, if an FPGA device

controls hydraulic valves with the digital outputs, the FPGA device must

keep the valves turned off until the host VI is launched and starts to control

the system. You can create an FPGA VI and configure the FPGA device to

set the power-on states of the FPGA device.

You must program the FPGA VI so that the block diagram sets the output

states without any dependencies on the host VI. For example, you can place

Chapter 2 Creating FPGA VIs

© National Instruments Corporation 2-17 FPGA Module User Manual

the digital and analog output functions in the first frame of a sequence

structure. You then place the rest of the LabVIEW code in the subsequent

frames of the sequence structure, as shown in Figure 2-10. Then configure

the FPGA VI to start executing as soon as it is loaded in the FPGA. Compile

and download the FPGA VI to the flash memory on the FPGA device and

configure the FPGA device to automatically load the FPGA VI from the

flash memory when the FPGA device powers on. When the FPGA device

powers on, the FPGA VI loads into the FPGA from the flash memory, and

the FPGA VI starts executing immediately. The output functions in the first

frame of the sequence structure on the FPGA VI set the output states. Refer

to Chapter 4, Running FPGA VIs, for information about automatically

loading and running FPGA VIs.

Figure 2-10. Setting the Output State without Host VI Dependency

You can create more than a static power-on state on the outputs of the

FPGA device. You can create arbitrary power-on functionality that

performs complex actions. For example, you can set outputs based on the

state of the inputs, use serial communication with an external device, and

so on.

Note If you use an I/O resource only once after the power-on state, you can select the

None arbitration option to save space. Refer to Chapter 3, Managing Shared Resources,

for information about arbitration.

Chapter 2 Creating FPGA VIs

FPGA Module User Manual 2-18 ni.com

Communicating with a Host VI

You can control and monitor data directly from the FPGA device using

Interactive Front Panel Communication. You also can use a host VI

running on the host computer or on an RT target to control or monitor the

FPGA VI through Programmatic FPGA Interface Communication. With

Interactive Front Panel Communication, you can use a polling-based

method of communicating between the host VI and the FPGA VI by

reading and writing indicators and controls. With Programmatic FPGA

Interface Communication, you can use an interrupt-based method of

communication where, in addition to communicating using indicators and

controls, the FPGA VI can generate hardware interrupts that the host VI can

wait for and acknowledge. You can use FPGA Interface functions available

with the FPGA Module to create host VIs that communicate with the FPGA

VI. Refer to Chapter 5, Communicating with FPGA VIs, for information

about using the FPGA Interface functions.

A host VI can control and monitor only data passed through the FPGA VI

front panel. For example, if you want the host VI to monitor the data from

an Analog Input terminal, you must wire an indicator to the Analog Input

function on the FPGA VI block diagram.

Interrupt-Based Communication
You can use interrupts to notify the host VI of events, such as data being

ready, an error occurring, or a task finishing. An interrupt is a physical

hardware line to the host that the FPGA device asserts.

Use the Interrupt VI in FPGA VIs to generate any of the 32 independent

logical interrupts available on the FPGA device. Each logical interrupt

specifies the reason for causing the interrupt and allows you to handle it

differently in software. You can set the Interrupt VI to wait until the host VI

acknowledges the interrupt on the FPGA device by wiring the Wait Until

Cleared input. In this case, the Interrupt VI waits until the host VI

controlling the device acknowledges the interrupt. Refer to the LabVIEW

Help, available by selecting Help»VI, Function, & How-To Help, for

more information about the Interrupt VI.

Use caution when you include simultaneous interrupt calls on the FPGA

device. The interrupt becomes a shared resource if you use more than one,

and this can induce jitter. Refer to Chapter 3, Managing Shared Resources,

for more information about resolving resource contention.

Chapter 2 Creating FPGA VIs

© National Instruments Corporation 2-19 FPGA Module User Manual

The advantage of using interrupt-based communication instead of

polling-based communication is that the host VI can perform other

operations while waiting for the interrupt. In contrast, if the host VI uses

polling-based communication, the host VI does not have time to perform

other operations while waiting for a specific data value from the FPGA

device.

© National Instruments Corporation 3-1 FPGA Module User Manual

3
Managing Shared Resources

This chapter describes how to use arbitration on shared resources in

FPGAVIs. If the FPGA VI design fits on the FPGA and if the FPGA VI

meets the performance expectations, keep the default Arbitration options.

Resource Contention and Arbitration

Many applications contain resources that are accessed from multiple

functions or VIs in an FPGA VI. For example, an application might use the

FPGA memory to temporarily store data from two independently operating

data acquisition loops. The FPGA Module includes arbitration to determine

which location can access the resource if the locations request access at the

same time.

Resource contention occurs when you include two or more functions or VIs

on the FPGA VI block diagram that simultaneously request access to the

same shared resource. A requestor becomes an accessor when it actively

requests information from a specific resource and is granted access by a

special component called an arbiter. The arbiter determines which

requestor becomes an accessor when resource contention occurs. Possible

shared resources include digital output lines, analog lines, memory blocks,

the interrupt line, front panel controls, local variables, and non-reentrant

subVIs.

Figure 3-1 illustrates an FPGA VI with arbitration between the first and

second requestor of AI0.

Chapter 3 Managing Shared Resources

FPGA Module User Manual 3-2 ni.com

Figure 3-1. Arbitration between Two Analog Input Requestors

Notice that the two While Loops might simultaneously request access to

AI0, depending on the values of the Period and Period 2 controls.

Similarly, one While Loop might request access to AI0 just after the other

While Loop was granted access but before AI0 finishes executing. Because

LabVIEW can allow only one accessor at a time, LabVIEW uses arbitration

to ensure sequential access to the shared resource.

By default, LabVIEW performs arbitration for all shared resources.

However, you can customize the arbitration options for FPGA Device I/O

functions if you need to optimize the FPGA VI. The default arbitration

option varies according to the type of shared resource.

Note The arbitration process can take several clock cycles to execute. Arbitration takes

additional time and FPGA space and can add jitter to an application.

Chapter 3 Managing Shared Resources

© National Instruments Corporation 3-3 FPGA Module User Manual

Arbitration Options

The following arbitration options are available with the FPGA Module:

• Normal

• Normal (Optimize for Single Accessor)

• None

An arbiter performs the following general steps during arbitration.

1. Waits for one or more requestors. If multiple requestors request access,

the arbiter determines which requestor becomes the accessor.

2. Passes data from the accessor to the resource.

3. Begins resource execution.

4. Waits for the resource to complete execution.

5. Passes data back to the accessor.

6. Prepares the resource for another execution.

7. Waits for the next requestor.

Normal
A resource with the Normal arbitration option always uses an arbiter, even

if only one requestor requests access. The Normal arbiter is a fair round

robin arbiter that ensures sequential access to a shared resource. The arbiter

does not allow a requestor to become an accessor again until all other

waiting requestors have become accessors. Consequently, jitter occurs if

you have more than one simultaneous requestor. Refer to the Jitter section

for more information.

Normal (Optimize for Single Accessor)
A resource with the Normal (Optimize for Single Accessor) option does

not use an arbiter if the FPGA VI contains only one requestor. If the FPGA

VI has multiple requestors, LabVIEW uses Normal arbitration even if the

requests are not simultaneous. You can save time and space in FPGA VIs if

you use the Normal (Optimize for Single Accessor) arbitration option if

the FPGA VI contains only one requestor.

Use the Normal (Optimize for Single Accessor) option in the following

situations:

• You have a large FPGA VI and need to save space.

• You have only one accessor for a resource.

Chapter 3 Managing Shared Resources

FPGA Module User Manual 3-4 ni.com

• You do not need single requestor channels synchronized with multiple

requestor channels. Refer to the Timing section for information about

synchronized channels.

None
A resource with the None option does not arbitrate simultaneous requests,

which saves significant space on the FPGA. To use the None option, you

must guarantee sequential access to the resource in the data flow of the

FPGA VI. If you attempt to make simultaneous requests in the FPGA VI,

you make simultaneous accesses and corrupt data.

Available Arbitration Options for Specific Resources
You can select arbitration options for most FPGA Device I/O resources, as

shown in Table 3-1. D is the default option, and O indicates other available

options.

Use the default I/O arbitration options for most applications. You can

change arbitration options to optimize some designs. To access arbitration

options, double-click or right-click the function icon on the block diagram

and select Properties from the shortcut menu. Select an arbitration option

on the Arbitration tab of the FPGA Device I/O function Configure dialog

box. Each configured Alias is associated with an Arbitration option.

References to the same Alias in the block diagram have the same arbitration

options. Refer to the LabVIEW Help, available by selecting Help»VI,

Function, & How-To Help, for more information about configuring

aliases.

None is the only arbitration option available for the Digital Input and

Digital Port Input functions. In addition to minimizing FPGA usage, the

None option allows the Digital Input and Digital Port Input functions to

execute in a single clock cycle. Use the None option to minimize FPGA

Table 3-1. Arbitration Options for I/O

Arbitration Option

Analog

Input

Analog

Output

Digital

Input

Digital

Output

Digital

Enable

Digital

Data

Normal Arbitration D D — D D D

Normal (Optimize for

Single Accessor)

O O — O O O

None — O D O O O

Chapter 3 Managing Shared Resources

© National Instruments Corporation 3-5 FPGA Module User Manual

usage and allow single clock cycle execution for the other digital I/O

functions.

Note Use the arbitration options with caution. Incorrect use can cause incorrect execution

of a block diagram or unintended data. For example, use the None option for an analog

output only if you are certain that the resource is not accessed from two functions or VIs

at the same time. If you do access the shared resource from two locations simultaneously,

the data presented to the resource is the logical OR of the data from the individual

requestors.

Shared resources other than FPGA Device I/O resources—such as

interrupts, non-reentrant VIs, global variables, written local variables, and

Memory VIs—use the Normal (Optimize for Single Accessor) arbitration

option. You cannot change the arbitration option for shared resources other

than FPGA Device I/O resources.

Note The default mode for subVIs in LabVIEW is non-reentrant, but you might need

reentrant subVIs for parallel execution and no arbitration. Refer to Chapter 2, Creating

FPGA VIs, for information about reentrant subVIs.

Jitter

Jitter occurs if a requestor is delayed in becoming an accessor due to

resource contention with one or more additional requestors. For example,

you might have an application performing a timed While Loop that samples

analog input at a fixed rate. Each time the Analog Input function executes,

the function becomes an accessor as soon as it requests the analog input

resource. If you add a second timed While Loop that samples the same

analog input resource, the two Analog Input functions might

simultaneously request the analog input resource. In this case, the arbiter

delays one of the requestors while allowing the other requestor to become

an accessor. The delayed requestor has jitter because the access does not

occur immediately after the request was made.

To avoid jitter, design the FPGA VI block diagram to make sure a requestor

does not access the shared resource when the shared resource is busy or to

make sure two requests do not occur during the same clock cycle. Jitter

occurs most often when you have a shared local variable with multiple

writers or a shared subVI from two independently running loops or

unrelated parts of the VI as shown in Figure 3-2.

Chapter 3 Managing Shared Resources

FPGA Module User Manual 3-6 ni.com

Figure 3-2. Arbitration Jitter

The VI in Figure 3-2 shows two While Loops that might attempt to write to

the Edge Detected local variable simultaneously. The arbiter allows one

While Loop to access Edge Detected at a time. The other While Loop does

not access Edge Detected until after the first While Loop finishes. Jitter is

introduced into the delayed While Loop.

The possibility of jitter grows with the number of accessors. If you do not

schedule simultaneous requests, the delay through the arbiter is constant

regardless of the number of potential accessors.

Timing

Not all arbitration options take the same amount of time to execute.

If you want accesses to multiple resources of the same type to occur

simultaneously, you must choose arbitration options for each resource that

take the same amount of time to execute. Figure 3-3 illustrates an FPGA VI

that might have a timing problem depending on the arbitration options

selected.

Chapter 3 Managing Shared Resources

© National Instruments Corporation 3-7 FPGA Module User Manual

Figure 3-3. Arbitration Timing

The Digital Output functions shown in Figure 3-3 have three arbitration

options. If you choose the Normal arbitration option, LabVIEW

implements an equivalent arbiter for both Connector0/DIO0 and

Connector0/DIO1. Both arbiters take the same amount of time to execute,

so Connector0/DIO0 and Connector0/DIO1 output simultaneously in the

first frame of the Flat Sequence structure.

If you choose the Normal (Optimize for Single Accessor) arbitration

option, LabVIEW implements a different arbiter for each of

Connector0/DIO0 and Connector0/DIO1. Connector0/DIO0 uses a normal

arbiter because the block diagram requests access to Connector0/DIO0

twice. Connector0/DIO1 uses no arbiter because the block diagram

requests access to Connector0/DIO1 only once. Connector0/DIO0 takes

longer to execute than Connector0/DIO1, so Connector0/DIO0 and

Connector0/DIO1 do not output simultaneously in the first frame of the Flat

Sequence structure.

If you choose the None arbitration option for both Digital Output functions,

LabVIEW does not implement an arbiter for either Connector0/DIO0 or

Connector0/DIO1. Therefore, Connector0/DIO0 and Connector0/DIO1

output simultaneously.

FPGA Utilization

Arbitration also can use a significant amount of space on the FPGA. If you

can decrease the number of requestors of a resource to one, use the Normal

(Optimize for Single Accessor) arbitration option. The single requestor

requires no arbitration. If you have two requestors, LabVIEW uses Normal

arbitration, even if Normal (Optimize for Single Accessor) is selected.

© National Instruments Corporation 4-1 FPGA Module User Manual

4
Running FPGA VIs

This chapter describes compiling, downloading, and running FPGA VIs, as

well as FPGA device configuration options.

Compiling FPGA VIs

You can compile an FPGA VI by clicking the Run button while targeted to

an FPGA device or by clicking the Build button in the FPGA Project

Builder dialog box. You also can compile an FPGA VI without running the

FPGA VI by clicking <Ctrl>-Run while targeted to an FPGA device.

Compiling FPGA VIs can take from a few minutes to a few hours.

Before you can run an FPGA VI on an FPGA device, the LabVIEW FPGA

Compile Server must convert the VI to a bitstream that LabVIEW can

download to the FPGA device. The LabVIEW FPGA Compile Server

executes independently of the LabVIEW development system, so you can

run it on a remote computer.

LabVIEW prompts you to compile new or changed FPGA VIs. If you made

only cosmetic changes to the FPGA VI and you did not change the front

panel controls and indicators, you do not need to recompile the FPGA VI.

Click the Use Old Bitstream button when the Warning: Beginning

compile for FPGA dialog box appears to avoid a new compile of an

already compiled FPGA VI. If you make non-cosmetic changes to the

FPGA VI and do not recompile, the most recently compiled FPGA VI

downloads and runs but you might receive incorrect results.

You can compile FPGA VIs if an FPGA device is not installed. However,

you cannot run the FPGA VI or use an emulator without an FPGA device

installed.

You can test an FPGA VI before compiling it. Refer to Chapter 6,

Debugging FPGA VIs, for information about testing FPGA VIs using

emulators.

Chapter 4 Running FPGA VIs

FPGA Module User Manual 4-2 ni.com

Compiling FPGA VIs Using the LabVIEW FPGA Compile Server
LabVIEW and the LabVIEW FPGA Compile Server have a client-server

architecture, where LabVIEW is a client to the LabVIEW FPGA Compile

Server. The client-server architecture allows you to disconnect LabVIEW

from the LabVIEW FPGA Compile Server during a compile. You then can

continue to use LabVIEW while the FPGA VI compiles. You must not

modify the FPGA VI being compiled. To reconnect, you again run the

FPGA VI targeted to the FPGA device. LabVIEW displays a compile

report when the compile is complete. You can view the compile report if

you are connected to the LabVIEW FPGA Compile Server. After you click

the OK button in the Successful Compile Report window, LabVIEW

embeds the new bitstream into the FPGA VI and downloads the bitstream

to the FPGA. The FPGA VI then runs on the FPGA device and you can

interact with it through the front panel using Interactive Front Panel

Communication.

The LabVIEW FPGA Compile Server launches automatically when you

run an FPGA VI that is not compiled or has been modified since the last

compile. LabVIEW converts the VI into intermediate files to send to the

LabVIEW FPGA Compile Server. The LabVIEW FPGA Compile Server

converts the intermediate files into a bitstream.

The compile time depends on the size of the VI, the processor speed, and

amount of memory in the computer on which you are compiling. National

Instruments recommends at least 512 MB of memory for the LabVIEW

FPGA Compile Server. If you have less memory, smaller block diagrams

might compile quickly, but larger block diagrams might use large amounts

of virtual memory, which can be very slow, and compiles can take over ten

times longer to complete.

The LabVIEW FPGA Compile Server does not close automatically.

You can close it by clicking the Stop Server button.

Compiling on a Remote Computer
You can install the LabVIEW FPGA Compile Server on a remote

computer. You might want to do this if your development computer is slow

and does not have enough memory to compile for the FPGA device.

By default, LabVIEW assumes the LabVIEW FPGA Compile Server is

installed on the local computer. To select a remote LabVIEW FPGA

Compile Server, select Tools»FPGA Target Options when you target the

FPGA device and enter the name or IP address and server port of the remote

computer running the LabVIEW FPGA Compile Server. Depending on the

network, you also might need to increase the network timeout.

Chapter 4 Running FPGA VIs

© National Instruments Corporation 4-3 FPGA Module User Manual

Launch the LabVIEW FPGA Compile Server manually on the remote

computer by selecting Start»Programs»National Instruments»

LabVIEW»LabVIEW FPGA Utilities»CompileServer. You must

launch the LabVIEW FPGA Compile Server manually when LabVIEW

clients on other computers are configured to connect to the remote

computer for compiling.

Managing Compilation Files
The LabVIEW FPGA Compile Server stores all files it uses to compile a

VI in a directory. Configure the directory by clicking the Configure button

in the LabVIEW FPGA Compile Server window. Click the Compile List

button to view the compile history and delete compile files you no longer

need. Typically, you do not need compile files after the bitstream is

embedded in the FPGA VI. Delete compile files that you no longer need to

save space on your hard drive.

Using Compiled FPGA VI Options

This section describes the clock rate and auto run options available with the

FPGA Module to compile into FPGA VIs. Each type of FPGA device

might have specific options available. Refer to the LabVIEW Help,

available by selecting Help»VI, Function, & How-To Help, for more

information about device-specific options.

Changing the FPGA Device Clock Rate
The FPGA device provides a 40 MHz clock to control the internal

operations on the FPGA. The internal clock determines the execution time

of the individual functions and VIs on the FPGA VI block diagram. Most

FPGA VIs can execute properly using this clock. You also can compile

FPGA VIs with faster clock rates for higher performance. However, not all

FPGA VIs can compile properly with faster clock rates. If you select a

clock rate that is too fast for the FPGA VI, the compile report window tells

you the compile failed. You must select a lower clock rate and try the

compile again.

Change the global default clock rate for an FPGA device by selecting

Tools»FPGA Target Options. All subsequent FPGA VIs you create

for that FPGA device have the new default clock rate. You can change the

clock rate for a specific FPGA VI by selecting Tools»Build for FPGA.

The clock rate for the specific FPGA VI is compiled into the bitstream.

Each time you compile the same FPGA VI, the FPGA VI retains the same

clock rate.

Chapter 4 Running FPGA VIs

FPGA Module User Manual 4-4 ni.com

Configuring FPGA VIs to Run Automatically
Some FPGA devices have flash memory that can store FPGA VIs.

If you want a VI that is loaded to the FPGA from flash memory to run

automatically on an FPGA device, change the Default Auto Run option

for the FPGA device by selecting Tools»FPGA Target Options. All

subsequent FPGA VIs you create for that FPGA device have the new

Default Auto Run setting. You can change the Auto Run VI option for

every instance of a specific FPGA VI by selecting Tools»Build for FPGA.

Refer to the Running FPGA VIs at Power On section for information about

storing the FPGA VI in flash memory.

Downloading FPGA VIs to the FPGA Device

When you click the Run button on a new or changed FPGA VI while

targeting an FPGA device, LabVIEW downloads the FPGA VI to the

FPGA automatically after the compile completes. LabVIEW automatically

downloads a previously compiled VI when you target an FPGA device and

click the Run button. LabVIEW does not download the FPGA VI if it is

already on the FPGA device. You can force a download by selecting

Operate»Download Application. You might force a download if you

want to reinitialize the FPGA to its default state.

When you target LabVIEW to Windows or an RT target, you can

programmatically download FPGA VIs to FPGA devices. Refer to the

LabVIEW Help, available by selecting Help»VI, Function, & How-To

Help, for information about programmatically downloading FPGA VIs.

Running FPGA VIs

After you compile and download an FPGA VI, you can run the FPGA VI

on the targeted FPGA device. When you click the Run button, the

FPGA VI runs using Interactive Front Panel Communication.

Note If you click the Run button and are not targeted to an FPGA device, LabVIEW

generates random data for the FPGA Device I/O functions.

If you want to close LabVIEW but leave the FPGA VI running, select

File»Exit without closing FPGA VIs. If you later restart LabVIEW, you

can reconnect to the running FPGA VI by opening the FPGA VI, targeting

LabVIEW to the FPGA device, and clicking the Run button.

Chapter 4 Running FPGA VIs

© National Instruments Corporation 4-5 FPGA Module User Manual

You can build host VIs to programmatically read and write to the front

panel of the FPGA VI by targeting LabVIEW to Windows or an RT target.

Refer to Chapter 5, Communicating with FPGA VIs, for more information.

After you run the FPGA VI, you might need to debug the block diagram.

Refer to Chapter 6, Debugging FPGA VIs, for more information.

Running FPGA VIs at Power On

You can store FPGA VIs on the flash memory of certain FPGA devices.

You can configure the FPGA device to automatically load the FPGA VI

from flash memory into the FPGA when the FPGA device powers on.

Select Tools»FPGA Utilities»Flash VI or Setup Board to store the FPGA

VI on the flash memory and to configure the FPGA VI to load when the

FPGA device powers on.

You must use this feature when you want the FPGA VI to run automatically

when the FPGA device is first powered on or after a power failure. Refer

to the Configuring FPGA VIs to Run Automatically section for more

information.

Setting Target Configurations

Some FPGA devices have configuration information stored in flash

memory. Select Tools»FPGA Utilities»Flash VI or Setup Board to

configure the flash memory options.

For example, the NI PXI-7831R stores two configuration options in flash

memory—Sync to PXI Clock and Analog Signal Connection. The FPGA

clock source is internal by default, or you can synchronize the FPGA device

to the 10 MHz clock of a PXI chassis. Use this feature when you want

multiple FPGA devices to synchronize the FPGA device clocks to the same

PXI clock. Refer to the hardware manual for more information about the

configuration options.

© National Instruments Corporation 5-1 FPGA Module User Manual

5
Communicating with FPGA VIs

Use the FPGA Interface functions to communicate with an FPGA VI from

a host VI. A host VI is a VI that communicates with the FPGA VI to control

the FPGA device. A host VI can run in Windows or on an RT target.

To write host VIs, you first target LabVIEW for Windows or an RT target.

Refer to the LabVIEW User Manual for information about developing VIs

that run on Windows. Refer to the LabVIEW Real-Time Module User

Manual for information about developing VIs for RT targets.

You can use the FPGA Interface functions to programmatically control and

communicate with an FPGA VI. Use the FPGA Interface functions to

perform the following operations in host VIs:

• Establishing communication with the FPGA VI.

• Reading and writing data to the FPGA VI.

• Waiting for and acknowledging FPGA VI interrupts.

• Closing the VI reference.

Establishing Communication with the FPGA VI

You must open a reference to the FPGA VI before you can communicate

with the host VI. Use the Open FPGA VI Reference function, available

when you target LabVIEW for Windows or an RT target, to do the

following:

• Select the FPGA VI with which the host VI communicates.

• Select the FPGA device on which the FPGA VI runs.

• Determine whether the host VI opens and runs the FPGA VI or just

opens the FPGA VI.

Selecting the FPGA VI
To select the FPGA VI, right-click the Open FPGA VI Reference icon on

the block diagram, and select Select Target VI from the shortcut menu.

Type the path or navigate to the FPGA VI on the host computer.

Chapter 5 Communicating with FPGA VIs

FPGA Module User Manual 5-2 ni.com

Selecting the FPGA Device
You can select the FPGA device when you create the host VI. Right-click

the Open FPGA VI Reference icon on the block diagram and select FPGA

from the shortcut menu to display the Select Board dialog box. Choose

from the list of available FPGA devices.

You also can programmatically select an FPGA device when you use the

Open FPGA VI Reference function using the VISA Resource Name input.

Right-click the Open FPGA VI Reference icon on the block diagram and

select External VISA Input from the shortcut menu to add the VISA

Resource Name input to the Open FPGA VI Reference function.

LabVIEW lists the FPGA devices in the Select Board dialog box using

relative addressing. Relative addressing shows the current assignments of

FPGA devices to labels. Each FPGA device is labeled RIO0, RIO1, RIO2,

and so on. If you select RIO1, the Open FPGA VI Reference function

downloads the FPGA VI to the FPGA device currently labeled RIO1 in the

Select Board dialog box. If you then remove the FPGA device currently

labeled RIO1 from the system, LabVIEW reassigns the labels so that the

FPGA device that was labeled RIO2 becomes RIO1, RIO3 becomes RIO2,

and so on. The Open FPGA VI Reference function now downloads the

FPGA VI to the new RIO1 FPGA device. You can use absolute addressing

or relative addressing with the VISA Resource Name input.

To use absolute addressing, use a VISA Resource Name Constant and

click the down arrow with the Operating tool to select an absolute address

from the pull-down menu. To use relative addressing, right-click inside the

Open FPGA VI Reference function and select FPGA from the shortcut

menu. You can select an available board in the Select Board dialog box that

appears. You also can use the VISA Resource Name Constant or a String

Constant and type the relative address in the constant.

Setting Open and Run Options
When you run the host VI, the Open FPGA VI Reference function creates

the reference and checks the specified FPGA device to determine if the

FPGA VI is on the FPGA device. If the selected FPGA VI does not match

the VI on the FPGA device, the Open FPGA VI Reference function

downloads the selected FPGA VI to the FPGA device. You can choose to

open the reference and run the FPGA VI by right-clicking the Open FPGA

VI Reference icon on the block diagram and selecting Open and Run from

the shortcut menu. Open and Run is the default behavior.

Chapter 5 Communicating with FPGA VIs

© National Instruments Corporation 5-3 FPGA Module User Manual

You also can choose to open the reference without running the FPGA VI by

right-clicking the Open FPGA VI Reference icon on the block diagram and

selecting Open from the shortcut menu. If you open an FPGA VI reference

without running the FPGA VI, you can use the Invoke Method function

from the host VI to programmatically run the FPGA VI. You also can use

the Invoke Method function to download and abort FPGA VIs. Refer to the

LabVIEW Help, available by selecting Help»VI, Function, & How-To

Help, for more information about the Open FPGA VI Reference and

Invoke Method functions.

Reading and Writing Data to the FPGA VI

A host VI can control and monitor only data passed through the FPGA VI

front panel. You cannot access any wires on the block diagram that do not

have controls or indicators. First use the Open FPGA VI Reference

function to open a reference to the FPGA VI. Then wire the HW Exec Ref

Out parameter to the Read/Write Control function to access controls and

indicators on the FPGA VI. You can read indicators and write controls.

You also can write indicators and read controls. You can expand the

Read/Write Control function to read or write multiple controls and

indicators. When you run the host VI, the Read/Write Control function

reads and writes controls and indicators in the order they appear in the

function icon on the block diagram.

The Read/Write Control function supports scalar data, such as numeric

controls, and complex data, such as arrays and clusters. You can program

the FPGA VI to bundle scalar data into arrays or clusters and then read the

arrays or clusters of data as a single block with the host VI to make sure all

data is read at a single time. Refer to the LabVIEW Help, available by

selecting Help»VI, Function, & How-To Help, for information about

arrays and clusters.

Note The FPGA Module creates a register map specific to the FPGA VI that includes

a hardware register for every control and indicator. LabVIEW uses the register maps

internally to communicate with the FPGA VI for both Interactive Front Panel

Communication and Programmatic FPGA Interface Communication.

Chapter 5 Communicating with FPGA VIs

FPGA Module User Manual 5-4 ni.com

Responding to FPGA VI Interrupts

You can generate interrupts from the FPGA VI to notify the host VI of

events, such as data being ready, an error occurring, or a task finishing. Use

the Invoke Method function in a host VI to interact with an interrupt on an

FPGA device. You can wait on interrupts with the Wait on IRQ method.

You also can acknowledge interrupts with the Acknowledge IRQ method.

Refer to Chapter 2, Creating FPGA VIs, for information about generating

interrupts in FPGA VIs.

Waiting for Interrupts
Use the Wait on IRQ method in the host VI to wait for logical interrupts

generated by the FPGA VI. For example, you might want the host VI to

perform independent operations while the FPGA VI collects data. You can

use the Wait on IRQ method in the host VI to detect when the FPGA VI

data is ready and the host VI can retrieve the data.

You can use arrays with the Wait on IRQ method if you want to wait on

multiple logical interrupts. Depending on the logical interrupt or

combination of logical interrupts, the host VI can execute different code to

handle the interrupts. You also can generate occurrences in the code that

enable other parts of the host VI.

Use only one Wait on IRQ method at a time per FPGA device in a host VI.

For example, if you control two FPGA devices with one host VI, you can

use two simultaneous Wait on IRQ methods, one for each device.

Note You cannot use more than one Wait on IRQ method at a time in a time-critical VI

running on an RT target. When you use the Wait on IRQ method in a time-critical priority

thread, the entire thread sleeps while the Wait on IRQ method waits on an interrupt.

Acknowledging Interrupts
You must use the Acknowledge IRQ method to acknowledge the logical

interrupts returned by the Wait on IRQ method to allow the FPGA VI to

assert those interrupts again. Acknowledge the interrupt only when the host

VI is ready to accept the next interrupt from the FPGA VI. If you use the

Wait Until Cleared option on the Interrupt VI in the FPGA VI,

acknowledging the interrupt allows the FPGA VI to continue executing.

For example, you might not want to acknowledge the interrupt until a

certain value is written to the FPGA device.

Chapter 5 Communicating with FPGA VIs

© National Instruments Corporation 5-5 FPGA Module User Manual

Closing a Reference to the FPGA VI

Use the Close FPGA VI Reference function to close the reference to the

FPGA VI after you finish communicating with the FPGA VI from the host

VI. Close the VI reference before exiting the host VI.

By default, the Close FPGA VI Reference function aborts the FPGA VI and

closes the FPGA VI reference. You can close the FPGA VI reference

without aborting the FPGA VI by right-clicking the Close FPGA VI

Reference function icon on the block diagram and selecting Close from the

shortcut menu. If you do not abort the FPGA VI, the FPGA VI continues

executing on the FPGA device after you close the FPGA VI reference.

© National Instruments Corporation 6-1 FPGA Module User Manual

6
Debugging FPGA VIs

This chapter describes debugging techniques you can use to test FPGA VIs.

You can use traditional LabVIEW debugging techniques only when you

target the FPGA VI to an emulator or run the FPGA VI on the host

computer. You cannot use traditional LabVIEW debugging techniques,

such as execution highlighting and probing, with LabVIEW targeted to an

FPGA device.

Refer to the LabVIEW User Manual for information about traditional

LabVIEW debugging techniques.

Testing a VI Before Compiling

You can test the logic of an FPGA VI before compiling it by targeting an

emulator. To target an emulator rather than the FPGA device, select the

execution target that matches the FPGA device. For example, if the device

appears in the Operate»Switch Execution Target menu as FPGA

Device: 78XX, the emulator for that device appears in the same menu as

FPGA Device: 78XXEmulator. You can use an emulator with any

available FPGA device.

When you run an FPGA VI with an emulator, LabVIEW downloads the

pre-compiled emulation VI included with the FPGA Module to the FPGA

device to provide I/O, and the FPGA VI runs on the host computer.

LabVIEW then communicates with the emulation VI on the FPGA while

both VIs run. The FPGA Module includes a pre-compiled emulation VI for

every FPGA device target.

You can use all traditional LabVIEW debugging tools, such as probes,

execution highlighting, breakpoints, and single-stepping. You cannot test

certain behavior, such as timing and determinism, with an emulator because

the FPGA VI runs on the host computer instead of the FPGA. The emulator

tries to preserve the timing of the Loop Timer, Wait, and Tick Count VIs as

much as possible. Other functions and VIs execute as quickly as possible

on the host computer.

Chapter 6 Debugging FPGA VIs

FPGA Module User Manual 6-2 ni.com

Note You must have an FPGA device installed to use an emulator. However, you can still

debug the FPGA VI without an FPGA device by targeting LabVIEW for Windows. When

you run an FPGA VI while targeting LabVIEW for Windows, LabVIEW generates random

data for the FPGA Device I/O functions.

Building Debugging into an FPGA VI

In addition to using emulators, you can build debugging functionality into

the FPGA VI with additional indicators or additional I/O. You can use

additional indicators and additional I/O with Interactive Front Panel

Communication or Programmatic FPGA Interface Communication.

Adding Indicators
You can add indicators to the FPGA VI block diagram to monitor the

internal state of the FPGA VI. Use indicators as you would probes. Place

them anywhere on the block diagram where you need to see data to verify

the functionality of the VI. You also can perform more advanced

debugging by using controls to change execution of the FPGA VI.

If you use additional indicators with Programmatic FPGA Interface

Communication, you must program the host VI to read the additional

indicators.

Note Adding indicators to the FPGA VI takes up more space on the FPGA. Be sure to

remove debugging indicators if you encounter space constraints on the FPGA.

Note An indicator consumes a small amount of execution time, which can affect the

performance of the FPGA VI. Whenever possible, add debugging indicators in parallel to

other operations in the FPGA VI to minimize the effect on execution time.

Adding I/O
If you have unused I/O resources on the FPGA device, you can add

additional I/O terminals to the FPGA VI block diagram to aid debugging.

You can easily monitor the internal state of Boolean logic, triggers, and so

on. You can create more advanced debugging tools by adding LabVIEW

code to analyze data and events and to control flow.

© National Instruments Corporation A-1 FPGA Module User Manual

A
Technical Support and
Professional Services

Visit the following sections of the National Instruments Web site at

ni.com for technical support and professional services:

• Support—Online technical support resources include the following:

– Self-Help Resources—For immediate answers and solutions,

visit our extensive library of technical support resources available

in English, Japanese, and Spanish at ni.com/support. These

resources are available for most products at no cost to registered

users and include software drivers and updates, a KnowledgeBase,

product manuals, step-by-step troubleshooting wizards,

conformity documentation, example code, tutorials and

application notes, instrument drivers, discussion forums,

a measurement glossary, and so on.

– Assisted Support Options—Contact NI engineers and other

measurement and automation professionals by visiting

ni.com/support. Our online system helps you define your

question and connects you to the experts by phone, discussion

forum, or email.

• Training—Visit ni.com/custed for self-paced tutorials, videos, and

interactive CDs. You also can register for instructor-led, hands-on

courses at locations around the world.

• System Integration—If you have time constraints, limited in-house

technical resources, or other project challenges, NI Alliance Program

members can help. To learn more, call your local NI office or visit

ni.com/alliance.

If you searched ni.com and could not find the answers you need, contact

your local office or NI corporate headquarters. Phone numbers for our

worldwide offices are listed at the front of this manual. You also can visit

the Worldwide Offices section of ni.com/niglobal to access the branch

office Web sites, which provide up-to-date contact information, support

phone numbers, email addresses, and current events.

© National Instruments Corporation G-1 FPGA Module User Manual

Glossary

Symbol Prefix Value

p pico 10–12

n nano 10–9

µ micro 10– 6

m milli 10–3

k kilo 103

M mega 106

G giga 109

T tera 1012

A

accessor A hardware component that has been granted access to a specific shared

resource by an arbiter.

alias A user defined name for an I/O terminal, displayed on the FPGA Device

I/O function icon on the block diagram. For example, you can create an

alias for AI0 named Oven Temperature that appears in the Analog Input

function icon on the block diagram. The complete list of aliases created in

an FPGA VI appears in the Configure dialog box for each FPGA Device

I/O function. Aliases configured in one FPGA VI do not appear in other

FPGA VIs.

ADC Analog-to-digital converter—an electronic device, often an integrated

circuit, that converts an analog voltage to a digital number.

arbiter A hardware component that controls access to a shared resource and

determines which requestor becomes the accessor of the shared resource.

The arbiter resolves resource contention over the shared resource.

arbitration The process of resolving resource contention by determining which

requestor of a shared resource is granted access to the shared resource.

Glossary

FPGA Module User Manual G-2 ni.com

B

bitstream Programming information that is downloaded to an FPGA device to

determine its behavior.

C

compile for FPGA The process of creating a bitstream from an FPGA VI.

D

DAC Digital-to-analog converter—an electronic device, often an integrated

circuit, that converts a digital number into a corresponding analog voltage

or current.

determinism Characteristic of a system that describes how consistently it can respond to

external events or perform operations within a given time limit.

development computer The computer on which you develop LabVIEW VIs. The VIs can run on

different execution targets.

device An instrument or controller you can access as a single entity that controls

or monitors real-world I/O points. A device often is connected to a host

computer through some type of communication network.

E

emulation VI The VI that the emulator downloads to the FPGA device so you can test and

debug an FPGA VI without compiling and downloading the FPGA VI.

emulator A target you can select from the Switch Execution Target list that mimics

the behavior of an FPGA device. The emulator runs the FPGA VI on the

host computer and accesses the emulation VI running on the FPGA device

to provide real I/O. You can use the emulator to test and debug FPGA VIs

without compiling and downloading the FPGA VIs.

execution target The computer or device that runs a LabVIEW VI. An execution target can

be an FPGA device, an RT target, or the development computer.

Glossary

© National Instruments Corporation G-3 FPGA Module User Manual

F

flash memory Non-volatile storage that retains its contents even when the device

powers off.

FPGA Field Programmable Gate Array. A programmable logic device (PLD) with

a high density of gates.

FPGA device A Reconfigurable I/O device that contains a reconfigurable FPGA

surrounded by fixed I/O resources.

FPGA Interface function A type of function that enables communication between a host VI and an

FPGA VI. Available with the FPGA Module targeted to LabVIEW for

Windows or an RT target.

FPGA VI A VI that is downloaded to the FPGA device that determines the

functionality of the hardware.

H

host computer The computer that controls and monitors the FPGA device.

host VI A VI that runs in software on the host computer and controls and monitors

the FPGA VI on the FPGA device using FPGA Interface functions.

I

Interactive Front Panel

Communication

A method of communicating with the FPGA VI that allows you to interact

directly with the FPGA VI front panel controls and indicators. The front

panel of the FPGA VI displays on the host computer while the block

diagram executes on the FPGA device.

interrupt A hardware signal that allows a peripheral device to alert the host computer

to perform some action.

I/O Input/output—the transfer of data to/from a computer system involving

communications channels, operator interface devices, and/or data

acquisition and control interfaces.

Glossary

FPGA Module User Manual G-4 ni.com

J

jitter The amount of time that the loop cycle time varies from the desired time.

L

logical interrupt A hardware alert that allows multiple interrupt sources to simply and

efficiently share a single hardware interrupt in an application.

N

non-reentrant VI A subVI that occurs as a single instance shared among multiple callers.

O

operating system Base-level software that controls a computer, runs programs, interacts with

users, and communicates with installed hardware or peripheral devices.

P

power-on state The state at which a device is set when the system powers on.

Programmatic FPGA

Interface

Communication

A method of communicating with the FPGA VI that allows you to use a

host VI to communicate programmatically with an FPGA VI using the

FPGA Interface functions. LabVIEW on the host computer communicates

directly with LabVIEW on the FPGA device.

PWM Pulse width modulation. Typically refers to a signal whose high period and

low period can be varied in a controlled fashion.

R

real time A property of an event or system in which data is processed with high

determinism as it is acquired instead of being accumulated and processed

at a later time.

reentrant VI A subVI that replicates itself for each caller.

Glossary

© National Instruments Corporation G-5 FPGA Module User Manual

register A location in hardware on the FPGA device that you can read or write to

pass data between the FPGA device and the host computer. Every control

and indicator in an FPGA VI has an associated register.

register map A collection of registers that define the hardware interface for

communicating between the host computer and an FPGA device.

requestor A LabVIEW or hardware component that has requested access to a shared

resource.

resolution The smallest signal increment that can be detected by a measurement

system. Resolution can be expressed in bits, in proportions, or in percent of

full scale. For example, a system has 12-bit resolution, one part in 4,096

resolution, and 0.0244% of full scale.

resource A hardware component that can be accessed from a block diagram. A

resource might be a component connected to the FPGA, such as an ADC or

DAC. It also can be a component within the FPGA, such as FPGA memory

or a local variable.

resource contention A situation that occurs when two requestors simultaneously attempt to

access a shared resource or when a requestor attempts to access a resource

that is currently in use by an accessor.

round robin arbitration An arbitration scheme where no requestor has priority over any other

requestors. The current accessor does not become an accessor again until

any other pending requestors have become accessors.

RT target A National Instruments RT Series device you can target to run host VIs.

T

terminal A specific I/O resource on an FPGA device, such as Connector0/DIO0.

V

VI See virtual instrument (VI).

virtual instrument (VI) Program in LabVIEW that models the appearance and function of a

physical instrument.

	LabVIEW FPGA Module User Manual
	Support
	Worldwide Technical Support and Product Information
	National Instruments Corporate Headquarters
	Worldwide Offices

	Important Information
	Warranty
	Copyright
	Trademarks
	Patents
	WARNING REGARDING USE OF NATIONAL INSTRUMENTS PRODUCTS

	Contents
	About This Manual
	Conventions
	Related Documentation

	Chapter 1 Introduction
	Custom Hardware from LabVIEW
	Additional Advantages of the FPGA Module
	FPGA Module Application Development
	Execution Targets
	Execution of FPGA VIs
	Communication with FPGA VIs
	Interactive Front Panel Communication
	Figure 1-1. Interactive Front Panel Communication
	Programmatic FPGA Interface Communication
	Figure 1-2. Programmatic FPGA Interface Communication

	FPGA Module Examples

	Chapter 2 Creating FPGA VIs
	Targeting FPGA Devices
	Utilizing FPGA Space
	Performing Basic I/O
	Analog I/O
	Analog Input
	Analog Output

	Digital I/O

	Timing FPGA VIs
	Creating Timed I/O Applications
	Figure 2-1. Controlling Execution Rate with the Loop Timer VI

	Creating Delays between Events
	Figure 2-2. Using Wait VIs for a Series of Delays

	Measuring Time between Events
	Figure 2-3. Measuring Execution Time with the Tick Count VI

	Customizing I/O
	Creating Triggers
	Figure 2-4. Creating a Trigger with the Wait on Edge or Level Function
	Figure 2-5. Triggering when Multiple Digital Lines Match a Condition

	Creating Counters
	Figure 2-6. Counting Rising Edges
	Figure 2-7. Building More Advanced Counters
	Figure 2-8. Measuring the Period of an Input Signal

	Using Parallel Operations
	Parallel Operations on the FPGA
	Figure 2-9. Implementing Multiple Data Acquisition Engines

	SubVIs on the FPGA
	Table 2-1. Non-Reentrant versus Reentrant SubVIs

	Understanding How to Program FPGA VIs
	Restricted and Unavailable VIs and Functions
	Mathematical Operations
	Arrays
	Memory

	Controlling I/O Power-On States
	Figure 2-10. Setting the Output State without Host VI Dependency

	Communicating with a Host VI
	Interrupt-Based Communication

	Chapter 3 Managing Shared Resources
	Resource Contention and Arbitration
	Figure 3-1. Arbitration between Two Analog Input Requestors

	Arbitration Options
	Normal
	Normal (Optimize for Single Accessor)
	None
	Available Arbitration Options for Specific Resources
	Table 3-1. Arbitration Options for I/O

	Jitter
	Figure 3-2. Arbitration Jitter

	Timing
	Figure 3-3. Arbitration Timing

	FPGA Utilization

	Chapter 4 Running FPGA VIs
	Compiling FPGA VIs
	Compiling FPGA VIs Using the LabVIEW FPGA Compile Server
	Compiling on a Remote Computer
	Managing Compilation Files

	Using Compiled FPGA VI Options
	Changing the FPGA Device Clock Rate
	Configuring FPGA VIs to Run Automatically

	Downloading FPGA VIs to the FPGA Device
	Running FPGA VIs
	Running FPGA VIs at Power On
	Setting Target Configurations

	Chapter 5 Communicating with FPGA VIs
	Establishing Communication with the FPGA VI
	Selecting the FPGA VI
	Selecting the FPGA Device
	Setting Open and Run Options

	Reading and Writing Data to the FPGA VI
	Responding to FPGA VI Interrupts
	Waiting for Interrupts
	Acknowledging Interrupts

	Closing a Reference to the FPGA VI

	Chapter 6 Debugging FPGA VIs
	Testing a VI Before Compiling
	Building Debugging into an FPGA VI
	Adding Indicators
	Adding I/O

	Appendix A Technical Support and Professional Services
	Glossary
	A
	B-E
	F-I
	J-R
	T-V

