May 17, 2018

Calculating the Resistance of Multirange Multipliers

There are two methods of calculating the values of multiplier resistors for a multirange voltmeter. In the first method, each multiplier is calculated the same as for a single-range voltmeter. Assume that you wish to extend the range of a 1-mA movement to measure 0- 10, 0- 100, and 0- 1000 volts, and you also want a 0- 1-V range. Since full-scale deflection equals 1 Von the 0- 1-V range (V = IM RM = 0.001 A x 1000 Q = I volt), no multiplier is needed. The total resistance (RT OT) needed to limit meter current (IM) to 1 mA on the 0- 10-V range is RrnT = V w vJ IM   =   10 V/ 0.001A=    10,000 Q

 

Since the resistance of the meter (RM) is 1000 ohms, then the multiplier resistance RMuLT is 9000 ohms. A second method of calculating the values of voltmeter multiplier resistors is the series-multiplier arrangement in which the multiplier resistors are connected in series. R1 is the multiplier resistor for the 0-10 volt range. For the 0- 100-V range, R1 is in series with R2. Therefore, the value of the multiplier resistance for the 0- 100-V range is equal to R1 plus R2. Similarly, the multiplier resistance for the 0-1000-V range is equal to R1 plus R2 plus R3.

Now, let’s calculate the values for a series multiplier voltmeter. We will use the same 1-mA, 1000-Q meter movement that we used previously. Since this movement indicates 1 volt for a full-scale deflection, no multiplier resistor is needed for the 0- 1-V range. Therefore, your first step is to calculate the multiplier resistance needed for the 0- 10-V range. Again, using Ohm’s law, find the total resistance (RToT) needed to limit meter current (IM) to 1 mA at this range:

RrnT = V w.xl lM     = 10 V/ 0.001 A = 10,000 Q

Therefore, multiplier resistor R1 for the 0-10-V range equals 10,000n minus the 1000-Qmeter resistance, or 9000 n. Thus far, the procedure is the same as in the other method, and the value of the multiplier resistor is the same for the 0- 10-V range. Having found the series multipliers for the 0- 1- and 0- 10-V ranges, let’s calculate the total resistance needed for the 0- 100-Vrange:

RrnT = vM AXl’IM = 100 v; o.001 A = 100,000 n

Subtracting the meter resistance from the total resistance, you find that the multiplier resistance for the 0- 100-V range is 99,000 ohms. Thus far, this method is the same as the previous, but now the multiplier resistance is made up of R I plus R2 in series. Therefore, since you need 99,000 n for the multiplier resistance and R I equal s 9000 n, R2 must equal 90,000 n.

Similarly, for the 0-1000-V range:

RT oT = VMNJ’IM = 1000 v; o.001 A = 1,000,000 n

Thus, RMuLT = RToT –   RM = 1,000,000 –   1000 = 999,000 n. But RMuLT = R1    + R2   + R3.

Thus, RMuLT =   999,000 n =   9000 + 90,000 + R3

And R3 =   999,000 –   99,000 =   900,000 n

No matter which method you use, the value of the multiplier resistance for each range remains the same. However, in the first method, the multiplier is a single resistor, while in the second method, on all but the first extended range, it is made up of resistors in series.

 

 

References

https://www.allaboutcircuits.com/textbook/direct-current/chpt-8/voltmeter-design/

http://sound.whsites.net/articles/meters.htm

http://www.rfcafe.com/references/radio-craft/meter-shunts-multipliers-may-1931-radio-craft.htm

Sign Up for Our Newsletter!

    A monthly email packed with valuable content—industry news, tutorials, obsolescence updates, and more. No sales pitches, just insights we think you'll find helpful!

    Posts You May Like
    Setup and Optimize the National Instruments PXI-5441 Waveform Generator

    The National Instruments PXI-5441 is a powerful PXI waveform generator designed to support high-speed waveform downloads up...

    October 25, 2024
    How NVIDIA Jetson Systems are Revolutionizing AI Applications

    Companies in almost every industry are being transformed by artificial intelligence, and autonomous machines are...

    March 2, 2023
    How to Use a NI Spectrum Analyzer with an RF Signal Generator

    The PXIe Platform from National Instruments offers an incredibly valuable toolset for test and measurement innovation. Its...

    October 16, 2024
    Simulating Circuits With SPICE

    It is no secret that simulation and testing is an important part of designing circuits....

    February 16, 2023