COMPREHENSIVE SERVICES

We offer competitive repair and calibration services, as well as easily accessible documentation and free downloadable resources.

SELL YOUR SURPLUS

We buy new, used, decommissioned, and surplus parts from every NI series. We work out the best solution to suit your individual needs. We Sell For Cash We Get Credit We Receive a Trade-In Deal

OBSOLETE NI HARDWARE IN STOCK & READY TO SHIP

We stock New, New Surplus, Refurbished, and Reconditioned NI Hardware.

APEX WAVES

Bridging the gap between the manufacturer and your legacy test system.

1-800-915-6216
 www.apexwaves.com
 sales@apexwaves.com

 \bigtriangledown

All trademarks, brands, and brand names are the property of their respective owners.

Request a Quote CLICK HERE PCIe-4065

CALIBRATION PROCEDURE **NI 4065 6¹/2-Digit Digital Multimeter**

This document contains instructions for writing an external calibration procedure for the National Instruments PXI/PCI/PCIe/USB-4065 6½-digit digital multimeter (DMM). For more information on calibration, visit ni.com/calibration.

Contents

Conventions	2
Software Requirements	2
Documentation Requirements	3
Calibration Function Reference	3
Password	3
Calibration Interval	3
Test Equipment	4
Test Conditions	4
Calibration Procedures	5
Initial Setup	6
Verification Procedures	7
Adjustment Procedures	53
Adjusting Linearization	55
Adjusting DC Voltage	57
Adjusting 4-Wire Resistance	61
Adjusting 2-Wire Resistance	64
Adjusting AC Voltage	75
Adjusting DC Current	77
Adjusting AC Current	82
Completing the Adjustment Procedures	84
Verification Limits	84
DC Voltage	85
AC Voltage	85
4-Wire Resistance	87
2-Wire Resistance	87
DC Current	88
AC Current	89
Appendix A: Calibration Options	90
Where to Go for Support	93
- T T	

Conventions

	The following conventions are used in this document:
»	The » symbol leads you through nested menu items and dialog box options to a final action. The sequence Options » Settings » General directs you to pull down the Options menu, select the Settings item, and select General from the last dialog box.
	This icon denotes a note, which alerts you to important information.
	This icon denotes a caution, which advises you of precautions to take to avoid injury, data loss, or a system crash. When this symbol is marked on a product, refer to the <i>Read Me First: Safety and Electromagnetic Compatibility</i> document included with the device for information about precautions to take.
bold	Bold text denotes items you must select or click in the software, such as menu items and dialog box options. Bold text also denotes parameter names.
italic	Italic text denotes variables, emphasis, a cross-reference, hardware labels, or an introduction to a key concept. Italic text also denotes text that is a placeholder for a word or value you must supply.
monospace	Text in this font denotes text or characters you should enter from the keyboard, sections of code, programming examples, and syntax examples. This font is also used for the proper names of disk drives, paths, directories, programs, subprograms, subroutines, device names, functions, operations, variables, filenames, and extensions.

Software Requirements

NI-DMM supports a number of programming languages including LabVIEW, LabWindows[™]/CVI[™], Microsoft Visual C++, and Microsoft Visual Basic. When you install NI-DMM, you need to install support for only the language you intend to use to write your calibration utility. The procedures in this document are described using LabVIEW VIs and C function calls.

Note NI-DMM version 2.7.1 or later supports NI PXI/PCI/PCIe-4065 calibration. NI-DMM version 2.8 or later supports NI USB-4065 calibration. You can download the latest version of NI-DMM from ni.com/drivers.

Documentation Requirements

In addition to this calibration document, you may find the following references helpful in writing your calibration utility. All of these documents are installed on your computer when you install NI-DMM. To locate them, select **Start>All Programs>National Instruments> NI-DMM>Documentation**.

- NI Digital Multimeters Help
- NI Digital Multimeters Getting Started Guide

NI recommends referring to the following document online at ni.com/ manuals to ensure you are using the latest NI 4065 specifications:

• NI 4065 Specifications

Calibration Function Reference

For detailed information about the NI-DMM calibration VIs and functions in this procedure, refer to the *LabVIEW Reference* or the *C/CVI/VB Reference* sections of the *NI Digital Multimeters Help*, located at **Start**» **All Programs**»**National Instruments**»**NI-DMM**»**Documentation**. Refer to Figure 9 in this document for the procedural flow for verification. Refer to Figure 10 in this document for the procedural flow for adjustment.

Password

The password is required to open an external calibration session. If the password has not been changed since manufacturing, the password is NI.

Calibration Interval

The accuracy requirements of your measurement application determine how often you should calibrate the NI 4065. NI recommends performing a complete calibration at least once a year. NI does not guarantee the absolute accuracy of the NI 4065 beyond this one-year calibration interval. You can shorten the calibration interval based on the demands of your application. Refer to *Appendix A: Calibration Options* for more information. Table 1 lists the equipment required for calibrating the NI 4065. If you do not have the recommended instruments, use these specifications to select a substitute calibration standard.

Required Equipment	Recommended Models
Multifunction calibrator	Fluke 5700A (calibrated within the last 90 days)
	or
	Fluke 5720A (calibrated within the last year)
Two sets of low thermal electromotive force (EMF) copper cables	Fluke 5440 cables
A means of creating a short with low thermal EMF (≤ 150 nV) across the HI and LO input banana plug connectors on the NI 4065	Pomona 5145 insulated double banana plug shorting bar
Double banana plug with binding posts	Pomona 5405 Binding Post
Two insulated low thermal electromotive force (EMF) spade lugs	Pomona 2305 lugs
Chassis	NI PCI/PCIe-4065: PC with an available PCI slot or an available x1, x4, x8, or x16 PCI Express slot
	NI USB-4065: PC with an available USB port
	NI PXI-4065: National Instruments PXI chassis and controller

|--|

Test Conditions

Follow these guidelines to optimize the connections and the environment during calibration:

- Ensure that the PXI chassis fan speed is set to HI (if calibrating the NI PXI-4065) and the fan filters are clean.
- Use PXI/PCI filler panels in all vacant slots to allow proper cooling.
- Plug the PXI chassis or PC and the calibrator into the same power strip to avoid ground loops.
- Power on and warm up the calibrator for at least 60 minutes before beginning this calibration procedure.

- Power on and warm up the NI PXI/PCI/PCIe-4065 for at least 30 minutes and the NI USB-4065 for at least 50 minutes before beginning this calibration procedure.
- Maintain an ambient temperature of 23 ± 1 °C.
- Maintain an ambient relative humidity of less than 60%.
- Allow the calibrator to settle fully before taking any measurements. Consult the Fluke 5700A/5720A user documentation for instructions.
- Allow the thermal EMF enough time to stabilize when you change connections to the calibrator or the NI 4065. The suggested time periods are stated where necessary throughout this document.
- Keep a shorting bar connected between the *V GUARD* and GROUND binding posts of the calibrator at all times.
- Clean any oxidation from the banana plugs on the Fluke 5440 cables before plugging them into the binding posts of the calibrator or the banana plug connectors of the NI 4065. Oxidation tarnishes the copper banana plugs so they appear dull rather than shiny. Oxidation leads to greater thermal EMF.
- Keep the blue banana plugs on the Fluke 5440 cables connected to the *V GUARD* binding post of the calibrator at all times.
- Prevent the cables from moving or vibrating by taping or strapping them to a nonvibrating surface. Movement or vibration causes triboelectric effects that can result in measurement errors.

Calibration Procedures

The calibration process includes the following steps:

- 1. *Initial Setup*—Set up the test equipment.
- 2. *Verification Procedures*—Verify the existing operation of the device. This step confirms whether the device is operating within its specified range prior to calibration. Figure 9 shows the procedural flow for verification.
- 3. *Adjustment Procedures*—Perform an external adjustment of the device that adjusts the calibration constants with respect to a known voltage source. Figure 10 shows the procedural flow for adjustment.
- 4. Reverification—Repeat the verification procedure to ensure the device is operating within its specifications after adjustment.

These steps are described in more detail in the following sections and in *Appendix A: Calibration Options*.

Note Throughout the procedure, refer to the C/C++ function call parameters for the LabVIEW input values.

Initial Setup

To set up the test equipment, complete the following steps:

- 1. Remove all connections from the input banana plug connectors on the NI 4065.
- 2. Verify that the calibrator has been calibrated within the time limits specified in the *Test Equipment* section, and that DC zeros calibration has been performed within the last 30 days. Consult the Fluke 5700A/5720A user documentation for instructions on calibrating these devices.

Note Warm up the calibrator for at least 60 minutes, the NI PXI/PCI/PCIe-4065 (installed in a powered-on chassis or PC) for at least 30 minutes, and the NI USB-4065 (plugged into a USB port on a powered-on PC) for at least 50 minutes before you begin this procedure.

3. Call the niDMM Initialize VI with the Instrument Descriptor of the device to create an instrument session.

LabVIEW Block Diagram	C/C++ Function Call
Instrument Descriptor ID Query Reset error out error in (no error)	Call niDMM_init with the following parameters:
	Resource_Name: The name of the device to calibrate. You can find this name under Devices and Interfaces in Measurement & Automation Explorer (MAX) ID_Query: VI_FALSE Reset: VI_FALSE

 \mathbb{N}

Note You will use this session in all subsequent VI and function calls throughout the verification procedures. For more information on using the niDMM Initialize VI or the niDMM_init function, refer to the *NI Digital Multimeters Help*.

4. Call the niDMM Configure Powerline Frequency VI.

LabVIEW Block Diagram	C/C++ Function Call
instrument handle eut error in (no error)	Call niDMM_ConfigurePowerLineFrequency with the following parameters: Instrument_Handle: The instrument handle from niDMM_init PowerLine Frequency: Set this parameter to 50 or 60, depending on the powerline frequency (in hertz) powering your instruments; select 50 for 400 Hz powerline frequencies

Verification Procedures

You can use the verification procedures described in this section for both pre-adjustment and post-adjustment verification. The steps of each verification procedure must be performed in the order listed; however, you can omit entire sections (for example, the entire *Verifying AC Current* section), if necessary. Refer to *Appendix A: Calibration Options* for more information.

The parameters **Range** and **Resolution in Digits** used in VI and function calls throughout this section have floating point values. For example, if **Range** = 1, the floating point value is 1.0. Refer to the *NI Digital Multimeters Help* for more information about parameter values.

Verifying DC Voltage

To verify DC voltage of the NI 4065, complete the following steps:

- 1. Reset the calibrator.
- 2. Connect the NI 4065 and the Fluke 5700A/5720A calibrator using the Fluke 5440 cable, as shown in Figure 1 for NI PXI/PCI/PCIe-4065 and Figure 2 for NI USB-4065. Table 2 lists the cable connections.

Figure 1. NI PXI/PCI/PCIe-4065 Cable Connections for Voltage and 2-Wire Resistance

Figure 2. NI USB-4065 Cable Connections for Voltage and 2-Wire Resistance

	Table 2.	Fluke 5440 Cable Conne	ections
--	----------	------------------------	---------

Banana Plug Connector (NI 4065)	Banana Plug Color (Fluke 5440 Cable)	Binding Post Label (Fluke 5700A/5720A Calibrator)
HI	Red	OUTPUT HI
LO	Black	OUTPUT LO
(No connection)	Blue	V GUARD

- 3. Wait two minutes for the thermal EMF to stabilize.
- 4. Generate 0 V on the calibrator. *Allow the calibrator output to settle before proceeding.*
- 5. Call the niDMM Reset VI.

LabVIEW Block Diagram	C/C++ Function Call
instrument handle INDIAN instrument handle out	Call niDMM_reset with the following parameter:
error in (no error)	Instrument_Handle : The instrument handle from niDMM_init

6. Call the niDMM Config Measurement VI. The niDMM Config Measurement VI is polymorphic. To change the selected instance of this polymorphic VI, right-click the VI and choose **Select Type** followed by **Resolution in Digits**.

LabVIEW Block Diagram	C/C++ Function Call
Resolution in Digits instrument handle Function error in (no error) Range	Call niDMM_ConfigureMeasurement Digits with the following parameters:
	Instrument_Handle: The instrument handle from niDMM_init Resolution_Digits: 6.5 Measurement_Function: NIDMM_VAL_DC_VOLTS Range: 0.1

7. Set a writable niDMM property node to set the input resistance of the NI 4065 to >10 G Ω .

LabVIEW Block Diagram	C/C++ Function Call
Instrument handle in ITO error in (no error)) Froperty Node Property Node Pr	Call niDMM SetAttributeVi Real64 with the following parameters: Instrument_Handle: The instrument handle from niDMM_init Attribute_ID: NIDMM_ATTR_INPUT_ RESISTANCE Attribute_Value: NIDMM_VAL_GREATER _THAN_10_GIGAOHM

8. Set a writable niDMM property node to set the aperture time and number of averages for the NI 4065.

9. Call the niDMM Control VI.

LabVIEW Block Diagram	C/C++ Function Call
instrument handle Control Action	Call niDMM_Control with the following parameters: Instrument_Handle: The instrument handle from niDMM_init Control Action: Commit

10. Call the niDMM Read VI.

LabVIEW Block Diagram	C/C++ Function Call
	Call niDMM_read with the following parameters:
instrument handle out error in (no error)	Instrument_Handle: The instrument handle from niDMM_init Reading: Verify that this measurement falls between the limits listed in Table 20 Maximum_Time: -1

- a. Store the measurement as the 100 mV >10 G Ω mode offset.
- 11. Set a writable niDMM property node to set the input resistance of the NI 4065 to 10 M Ω .

12. Call the niDMM Read VI.

LabVIEW Block Diagram	C/C++ Function Call
	Call niDMM_read with the following parameters:
instrument handle out error in (no error) Maximum Time (msec)	Instrument_Handle: The instrument handle from niDMM_init Reading: Verify that this measurement falls between the limits listed in Table 20 Maximum_Time: -1

a. Store the measurement as the 100 mV 10 M $\!\Omega$ mode offset.

- 13. Refer to Table 3 for the appropriate parameter values as you complete the following steps:
 - a. Call the niDMM Config Measurement VI. The niDMM Config Measurement VI is polymorphic. To change the selected instance of this polymorphic VI, right-click the VI and choose **Select Type** followed by **Resolution in Digits**.

LabVIEW Block Diagram	C/C++ Function Call
Resolution in Digits instrument handle Function error in (no error) Range	Call niDMM_ConfigureMeasurement Digits with the following parameters:
	Instrument_Handle: The instrument handle from niDMM_init Resolution_Digits: 6.5
	Measurement_Function:
	Range : The <i>Range</i> value listed in Table 3
	for the current iteration

b. Set a writable niDMM property node.

LabVIEW Block Diagram	C/C++ Function Call
Instrument handle in I/O error in (no error) Property Node Input Resistance Input Resistance Input Resistance Input Resistance	Call niDMM SetAttributeViReal64 with the following parameters: Instrument_Handle: The instrument handle from niDMM_init Attribute_ID: NIDMM_ATTR_INPUT _RESISTANCE Attribute_Value: The Input Resistance value listed in Table 3 for the current iteration

c. Set a writable niDMM property node (for iterations 1, 3, 5, and 6 only).

d. Call the niDMM Read VI.

LabVIEW Block Diagram	C/C++ Function Call
	Call niDMM_read with the following parameters:
instrument handle out error in (no error) Maximum Time (msec)	Instrument_Handle: The instrument handle from niDMM_init Reading: Verify that this measurement falls between the limits listed in Table 20 Maximum_Time: -1

e. Verify that this measurement falls between the limits listed in Table 20.

14. Repeat step 13 for each of the remaining iterations shown in Table 3.

	niDMM Config Measurement Parameters	
Iteration	Range (V _{dc})	Input Resistance
1	1	NIDMM_VAL_GREATER_THAN_10_GIGAOHM
2	1	NIDMM_VAL_10_MEGAOHM
3	10	NIDMM_VAL_GREATER_THAN_10_GIGAOHM
4	10	NIDMM_VAL_10_MEGAOHM
5	100	NIDMM_VAL_10_MEGAOHM
6	300	NIDMM_VAL_10_MEGAOHM

 Table 3.
 DC Voltage Offset Settings

- 15. Reset the calibrator.
- 16. Call the niDMM Config Measurement VI. The niDMM Config Measurement VI is polymorphic. To change the selected instance of this polymorphic VI, right-click the VI and choose **Select Type** followed by **Resolution in Digits**.

LabVIEW Block Diagram	C/C++ Function Call
	Call niDMM_ConfigureMeasurement Digits with the following parameters:
Resolution in Digits instrument handle Function error in (no error) Range Range	Instrument_Handle: The instrument handle from niDMM_init Resolution_Digits: 6.5 Measurement_Function: NIDMM_VAL_DC_VOLTS Range: 0.1

17. Set a writable niDMM property node to set the input resistance of the NI 4065 to >10 G Ω .

LabVIEW Block Diagram	C/C++ Function Call
Instrument handle in IT/O error in (no error) Froperty Node Property Not Node Property Node Property Node Property Node	Call niDMM SetAttributeVi Real64 with the following parameters: Instrument_Handle: The instrument handle from niDMM_init Attribute_ID: NIDMM_ATTR_INPUT_ RESISTANCE Attribute_Value: NIDMM_VAL_GREATER _THAN_10_GIGAOHM

18. Set a writable niDMM property node to set the aperture time and number of averages of the NI 4065.

19. Call the niDMM Control VI.

LabVIEW Block Diagram	C/C++ Function Call
instrument handle	Call niDMM_Control with the following parameters: Instrument_Handle: The instrument handle from niDMM_init Control Action: Commit

- 20. Output 100 mV on the calibrator with the range locked to 2.2 V. This range prevents a 50 Ω calibrator output resistance from creating a voltage divider with the internal resistance of the NI 4065. Allow the calibrator output to settle before proceeding.
- 21. Call the niDMM Read VI.

LabVIEW Block Diagram	C/C++ Function Call
	Call niDMM_read with the following parameters:
Instrument handle out error in (no error) Maximum Time (msec)	Instrument_Handle: The instrument handle from niDMM_init Reading: Verify that the result falls between the limits listed in Table 20 Maximum_Time: -1

a. Subtract the previously stored 100 mV >10 G Ω mode offset from this measurement, and verify that the result falls between the limits listed in Table 20.

22. Set a writable niDMM property node to set the input resistance of the NI 4065 to 10 M Ω .

LabVIEW Block Diagram	C/C++ Function Call
Input Resistance	Call niDMM SetAttributeViReal64 with the following parameters: Instrument_Handle: The instrument handle from niDMM_init Attribute_ID: NIDMM_ATTR_INPUT _RESISTANCE Attribute_Value: NIDMM_VAL_10_MEGAOHM

23. Call the niDMM Read VI.

LabVIEW Block Diagram	C/C++ Function Call
	Call niDMM_read with the following parameters:
Instrument handle out error in (no error) Maximum Time (msec)	Instrument_Handle: The instrument handle from niDMM_init Reading: Verify that the result falls between the limits listed in Table 20 Maximum_Time: -1

a. Subtract the previously stored 100 mV 10 M Ω mode offset from this measurement, and verify that the result falls between the limits listed in Table 20.

24. Call the niDMM Control VI.

LabVIEW Block Diagram	C/C++ Function Call
instrument handle	Call niDMM_Control with the following parameters: Instrument_Handle: The instrument handle from niDMM_init Control Action: Commit

25. Set a writable niDMM property node to set the input resistance of the NI 4065 to >10 G Ω .

LabVIEW Block Diagram	C/C++ Function Call
Instrument handle in IZO error in (no error) Error in (no error) Input Resistance Input Resistance NIDMM_VAL_GREATER_THAN_10_GIGAOHM	Call niDMM SetAttributeVi Real64 with the following parameters: Instrument_Handle: The instrument handle from niDMM_init Attribute_ID: NIDMM_ATTR_INPUT_ RESISTANCE Attribute_Value: NIDMM_VAL_GREATER _THAN_10_GIGAOHM

- 26. Output -100 mV on the calibrator with the range locked to 2.2 V. This range prevents a 50 Ω calibrator output resistance from creating a voltage divider with the internal resistance of the NI 4065. *Allow the calibrator output to settle before proceeding*.
- 27. Call the niDMM Read VI.

LabVIEW Block Diagram	C/C++ Function Call
	Call niDMM_read with the following parameters:
instrument handle Instrument handle out error in (no error) Maximum Time (msec)	Instrument_Handle: The instrument handle from niDMM_init Reading: Verify that the result falls between the limits listed in Table 20 Maximum_Time: -1

a. Subtract the previously stored 100 mV >10 G Ω mode offset from this measurement, and verify that the result falls between the limits listed in Table 20.

28. Set a writable niDMM property node to set the input resistance of the NI 4065 to 10 M Ω .

LabVIEW Block Diagram	C/C++ Function Call
Input Resistance	Call niDMM SetAttributeViReal64 with the following parameters: Instrument_Handle: The instrument handle from niDMM_init Attribute_ID: NIDMM_ATTR_INPUT _RESISTANCE Attribute_Value: NIDMM_VAL_10_MEGAOHM

29. Call the niDMM Read VI.

LabVIEW Block Diagram	C/C++ Function Call
	Call niDMM_read with the following parameters:
Instrument handle out error in (no error) Maximum Time (msec)	Instrument_Handle: The instrument handle from niDMM_init Reading: Verify that the result falls between the limits listed in Table 20 Maximum_Time: -1

a. Subtract the previously stored 100 mV 10 M Ω mode offset from this measurement, and verify that the result falls between the limits listed in Table 20.

- 30. Refer to Table 4 for the appropriate calibrator outputs and parameter values as you complete the following steps:
 - a. Call the niDMM Config Measurement VI. The niDMM Config Measurement VI is polymorphic. To change the selected instance of this polymorphic VI, right-click the VI and choose **Select Type** followed by **Resolution in Digits**.

LabVIEW Block Diagram	C/C++ Function Call
Resolution in Digits instrument handle Function error in (no error) Range	Call niDMM_ConfigureMeasurement Digits with the following parameters:
	Instrument_Handle: The instrument handle from niDMM_init Resolution_Digits: 6.5 Measurement_Function: NIDMM_VAL_DC_VOLTS Range: The Range listed in Table 4 for
	the current iteration

b. Set a writable niDMM property node.

LabVIEW Block Diagram	C/C++ Function Call
Instrument handle in I/O error in (no error) Property Node Input Resistance Input Resistance Input Resistance Input Resistance	Call niDMM SetAttributeViReal64 with the following parameters: Instrument_Handle: The instrument handle from niDMM_init Attribute_ID: NIDMM_ATTR_INPUT _RESISTANCE Attribute_Value: The Input Resistance value listed in Table 4 for the current iteration

c. Set a writable niDMM property node (for iterations 1, 5, 9, and 11 only).

d. Call the niDMM Control VI.

LabVIEW Block Diagram	C/C++ Function Call
instrument handle	Call niDMM_Control with the following parameters: Instrument_Handle: The instrument handle from niDMM_init Control Action: Commit

e. On the calibrator, output the value listed in the *Calibrator Output* column in Table 4 for the current iteration. *Allow the calibrator output to settle before proceeding*.

f. Call the niDMM Read VI.

LabVIEW Block Diagram	C/C++ Function Call
	Call niDMM_read with the following parameters:
instrument handle out error in (no error)	Instrument_Handle: The instrument handle from niDMM_init Reading: Verify that this measurement falls between the limits listed in Table 20 Maximum_Time: -1

- g. Verify that this measurement falls between the limits listed in Table 20.
- 31. Repeat step 30 for each of the remaining iterations shown in Table 4.

	niDMM Config Measurement Parameters		Calibrator
Iteration	Range (V _{dc})	Input Resistance	Output (V _{dc})
1	1	NIDMM_VAL_GREATER_THAN_10_GIGAOHM	1
2	1	NIDMM_VAL_10_MEGAOHM	1
3	1	NIDMM_VAL_GREATER_THAN_10_GIGAOHM	-1
4	1	NIDMM_VAL_10_MEGAOHM	-1
5	10	NIDMM_VAL_GREATER_THAN_10_GIGAOHM	10
6	10	NIDMM_VAL_10_MEGAOHM	10
7	10	NIDMM_VAL_GREATER_THAN_10_GIGAOHM	-10
8	10	NIDMM_VAL_10_MEGAOHM	-10
9	100	NIDMM_VAL_10_MEGAOHM	100
10	100	NIDMM_VAL_10_MEGAOHM	-100
11	300	NIDMM_VAL_10_MEGAOHM	300
12	300	NIDMM_VAL_10_MEGAOHM	-300

Table 4. DC Voltage Settings

32. Reset the calibrator for safety reasons.

You have completed verifying DC voltage for the NI 4065. Select one of the following options:

- If you want to continue verifying other modes, go to the *Verifying AC Voltage* section.
- If you do *not* want to verify any additional modes *and* you are performing a *pre-adjustment* verification, call the niDMM Close VI or the niDMM_close function to close the session.

LabVIEW Block Diagram	C/C++ Function Call
error in (no error)	Call niDMM_close with the following parameters:
	Instrument_Handle: The instrument handle from niDMM_init

Verifying AC Voltage

To verify AC voltage for the NI 4065, complete the following steps:

- 1. Reset the calibrator.
- 2. Connect the NI 4065 and the Fluke 5700A/5720A calibrator using the Fluke 5440 cable, as shown in Figure 1. Table 2 lists the cable connections.
- 3. Refer to Table 5 for the appropriate calibrator outputs and parameter values as you complete the following steps:
 - a. Call the niDMM Config Measurement VI. The niDMM Config Measurement VI is polymorphic. To change the selected instance of this polymorphic VI, right-click the VI and choose **Select Type** followed by **Resolution in Digits**.

LabVIEW Block Diagram	C/C++ Function Call
Resolution in Digits instrument handle Function error in (no error) Range	Call niDMM_ConfigureMeasurement Digits with the following parameters:
	Instrument_Handle : The instrument handle from niDMM init.
	Resolution_Digits: 6.5
	Measurement_Function:
	NIDMM_VAL_AC_VOLTS
	Range : The Range as shown in Table 5
	for the current iteration

b. Set a writable niDMM property node (for iterations 1, 4, 7, and 10 only).

LabVIEW Block Diagram	C/C++ Function Call
Instrument handle in Instrument handle in Instrument handle out Error in (no error) Property Node Aperture Time Units NIDMM_VAL_SECONDS	C/C++ Function Call Call niDMM SetAttributeViReal64 with the following parameters: Instrument_Handle: The instrument handle from niDMM_init Attribute_ID: NIDMM_ATTR_APERTURE_ TIME
Aperture Time	Attribute_Value:
	166.67 ms(200 ms for
Number Of Averages	50 Hz PowerLine
3	Frequency)
	Attribute_ID:
	NIDMM_ATTR_NUMBER_OF
	_AVERAGES
	Attribute_Value: 3

c. Call the niDMM Control VI.

LabVIEW Block Diagram	C/C++ Function Call
instrument handle Control Action	Call niDMM_Control with the following parameters: Instrument_Handle: The instrument handle from niDMM_init Control Action: Commit

d. On the calibrator, output the value listed in the *Calibrator Output* column in Table 5 for the current iteration. *Allow the calibrator output to settle before proceeding*.

e. Call the niDMM Read VI.

LabVIEW Block Diagram	C/C++ Function Call
instrument handle	Call niDMM_read with the following parameters:
error in (no error)	handle from niDMM_init Reading : Verify that this measurement falls between the limits listed in Table 21 Maximum_Time : -1

- f. Verify that this measurement falls between the limits listed in Table 21.
- 4. Repeat step 3 for each of the remaining iterations shown in Table 5.

		Calibrator Output	
Iteration	Range (V _{ac})	Amplitude (V _{ac})	Frequency (kHz)
1	0.2	0.004	1
2	0.2	0.02	1
3	0.2	0.2	1
4	2	0.04	1
5	2	0.2	1
6	2	2	1
7	20	0.4	1
8	20	2	1
9	20	20	1
10	300	6	1
11	300	30	1
12	300	300	1

 Table 5.
 AC Voltage Linearity Settings

5. Reset the calibrator.

- 6. Refer to Table 6 for the appropriate calibrator outputs and parameter values as you complete the following steps:
 - a. Call the niDMM Config Measurement VI. The niDMM Config Measurement VI is polymorphic. To change the selected instance of this polymorphic VI, right-click the VI and choose **Select Type** followed by **Resolution in Digits**.

LabVIEW Block Diagram	C/C++ Function Call
Resolution in Digits instrument handle Function error in (no error) Range	Call niDMM_ConfigureMeasurement Digits with the following parameters:
	Instrument_Handle: The instrument handle from niDMM_init Resolution_Digits: 6.5 Measurement_Function: NIDMM_VAL_AC_VOLTS Range: The Range listed in Table 6 for the current iteration

b. Set a writable niDMM property node (for iterations 1, 6, 11, and 16 only).

c. Call the niDMM Control VI.

LabVIEW Block Diagram	C/C++ Function Call
instrument handle Control Action	Call niDMM_Control with the following parameters: Instrument_Handle: The instrument handle from niDMM_init Control Action: Commit

- d. On the calibrator, output the value listed in the *Calibrator Output* column in Table 6 for the current iteration. *Allow the calibrator output to settle before proceeding*.
- e. Call the niDMM Read VI.

LabVIEW Block Diagram	C/C++ Function Call
	Call niDMM_read with the following parameters:
instrument handle out error in (no error) Maximum Time (msec)	Instrument_Handle: The instrument handle from niDMM_init Reading: Verify that this measurement falls between the limits listed in Table 21 Maximum_Time: -1

- f. Verify that this measurement falls between the limits listed in Table 21.
- 7. Repeat step 6 for each iteration shown in Table 6.

Table 6.	AC Voltage	Flatness	Settings
----------	------------	----------	----------

		Calibrator Output	
Iteration	Range (V _{ac})	Amplitude (V _{ac})	Frequency
1	0.2	0.2	10 Hz
2	0.2	0.2	40 Hz
3	0.2	0.2	20 kHz
4	0.2	0.2	50 kHz
5	0.2	0.2	100 kHz
6	2	2	10 kHz
7	2	2	40 Hz

		Calibrato	r Output
Iteration	Range (V _{ac})	Amplitude (V _{ac})	Frequency
8	2	2	20 kHz
9	2	2	50 kHz
10	2	2	100 kHz
11	20	20	10 Hz
12	20	20	40 Hz
13	20	20	20 kHz
14	20	20	50 kHz
15	20	20	100 kHz
16	300	200	10 Hz
17	300	200	40 Hz
18	300	200	20 kHz
19	300	200	50 kHz
20	300	200	100 kHz

 Table 6.
 AC Voltage Flatness Settings (Continued)

You have completed verifying AC voltage for the NI 4065. Select one of the following options:

- If you want to continue verifying other modes, go to the *Verifying* 4-Wire Resistance section.
- If you do *not* want to verify any additional modes *and* you are performing a *pre-adjustment* verification, call the niDMM Close VI or the niDMM_close function to close the session.

LabVIEW Block Diagram	C/C++ Function Call
instrument handle	Call niDMM_close with the following parameter:
error in (no error)	Instrument_Handle: The instrument handle from niDMM_init

Verifying 4-Wire Resistance

To verify the 4-wire resistance of the NI 4065, complete the following steps:

- 1. Reset the calibrator.
- Connect the NI 4065 and the Fluke 5700A/5720A calibrator using the Fluke 5440 cables, as shown in Figure 3 for the NI PXI/PCI/PCIe-4065 and Figure 4 for the NI USB-4065. Table 7 lists the cable connections.

Figure 3. NI PXI/PCI/PCIe-4065 Cable Connections for 4-Wire Resistance

Fluke 5440 Cable Identification	Banana Plug Connector (NI 4065)	Banana Plug Color (Fluke 5440 Cable)	Binding Post (Fluke 5700A/5720A Calibrator)
First cable	HI	Red	OUTPUT HI
	LO	Black	OUTPUT LO
	(No connection)	Blue	V GUARD
Second cable	HI SENSE	Red	SENSE HI
	LO SENSE	Black	SENSE LO
	(No connection)	Blue	V GUARD

3. If the Fluke 5440 cables were not previously connected in this configuration, wait two minutes for the thermal EMF to stabilize.

4. Call the niDMM Reset VI.

LabVIEW Block Diagram	C/C++ Function Call
error in (no error)	Call niDMM_reset with the following parameter: Instrument_Handle: The instrument handle from niDMM_init

- 5. Refer to Table 8 for the appropriate calibrator output and function parameter values as you complete the following steps:
 - a. Call the niDMM Config Measurement VI. The niDMM Config Measurement VI is polymorphic. To change the selected instance of this polymorphic VI, right-click the VI and choose **Select Type** followed by **Resolution in Digits**.

LabVIEW Block Diagram	C/C++ Function Call
Resolution in Digits instrument handle Function error in (no error) Range	Call niDMM_ConfigureMeasurement Digits with the following parameters:
	Instrument_Handle: The instrument handle from niDMM_init Resolution_Digits: 6.5 Measurement_Function:
	NIDMM_VAL_4_WIRE_RES Range : The <i>Range</i> listed in Table 8 for the current iteration

b. Set a writable niDMM property node (for iterations 1, 4, 7, 10, and 13 only).

c. Call the niDMM Control VI.

LabVIEW Block Diagram	C/C++ Function Call	
instrument handle Control Action	Call niDMM_Control with the following parameters: Instrument_Handle: The instrument handle from niDMM_init Control Action: Commit	

- d. On the calibrator, output the value listed in the *Calibrator Output* column in Table 8 for the current iteration. Make sure external sense is turned on, but 2-wire compensation is turned off. *Allow the calibrator output to settle before proceeding*.
- e. Wait for the specified time listed in the *Delay* column in Table 8 for the current iteration. This delay time is necessary to guarantee the calibrator signal has settled to within specifications.

f. Call the niDMM Read VI.

LabVIEW Block Diagram	C/C++ Function Call	
	Call niDMM_read with the following parameters:	
instrument handle error in (no error) Measurement error out Maximum Time (msec)	Instrument_Handle: The instrument handle from niDMM_init Reading: Verify that this measurement falls between the tolerances listed in Table 22 Maximum_Time: -1	

- g. Verify that this measurement falls between the tolerances listed in Table 22. Tolerances are provided instead of absolute limits, because your calibrator will have different discrete resistance values.
- 6. Repeat step 5 for each of the remaining iterations listed in Table 8.

Iteration	Range (Ω)	Calibrator Output	Delay (seconds)
1		0 Ω	0.0
2	100	10 Ω	0.0
3		100 Ω	0.0
4		0 Ω	0.0
5	1 k	100 Ω	0.0
6		1 kΩ	0.0
7		0 Ω	0.0
8	10 k	1 kΩ	0.0
9		10 kΩ	0.1
10		0 Ω	0.0
11	100 k	10 kΩ	0.1
12		100 kΩ	0.25
13		0 Ω	0.0
14	1 M	100 kΩ	0.25
15		1 MΩ	1.0

Table 8. 4-Wire Resistance Settings

You have completed verifying 4-wire resistance for the NI 4065. Select one of the following options:

- If you want to continue verifying other modes, go to the *Verifying* 2-Wire Resistance section.
- If you do *not* want to verify any additional modes *and* you are performing a *pre-adjustment* verification, call the niDMM Close VI or the niDMM_close function to close the session.

LabVIEW Block Diagram	C/C++ Function Call	
error in (no error)	Call niDMM_close with the following parameter:	
	Instrument_Handle: The instrument handle from niDMM_init	
Verifying 2-Wire Resistance

To verify 2-wire resistance for the NI 4065, complete the following steps:

- 1. Reset the calibrator.
- 2. Connect the NI 4065 and the Fluke 5700A/5720A calibrator using two sets of Fluke 5440 cables, a double banana plug, and two insulated, low EMF spade lugs, as shown in Figure 5 for the NI PXI/PCI/PCIe-4065 and Figure 6 for the NI USB-4065. Table 9 lists the cable connections.

Figure 5. NI PXI/PCI/PCIe-4065 Cable Connections for 2-Wire Resistance

Figure 6. NI USB-4065 Cable Connections for 2-Wire Resistance

Table 9. Fluke 5440 Cable Connections

Banana Plug Connector (NI 4065)	Banana Plug Color (Fluke 5440 Cable)	Binding Post Label (Fluke 5720A Calibrator)
HI	Red	OUTPUT HI
LO	Black	OUTPUT LO
(No connection)	Blue	V GUARD
HI	Red	OUTPUT HI SENSE
LO	Black	OUTPUT LO SENSE
(No connection)	Blue	V GUARD

- 3. Wait two minutes for the thermal EMF to stabilize.
- 4. Refer to Table 10 for the appropriate calibrator output and function parameter values as you complete the following steps:
 - a. Call the niDMM Config Measurement VI. The niDMM Config Measurement VI is polymorphic. To change the selected instance of this polymorphic VI, right-click the VI and choose **Select Type** followed by **Resolution in Digits**.

LabVIEW Block Diagram	C/C++ Function Call
Resolution in Digits instrument handle Function error in (no error) Range	Call niDMM_ConfigureMeasurement Digits with the following parameters:
	Instrument_Handle : The instrument
	Resolution Digits: 6.5
	Measurement_Function:
	NIDMM_VAL_2_WIRE_RES
	Range: The Range as shown in Table 10
	for the current iteration

b. Set a writable niDMM property node (for iterations 1, 4, 7, and 10 only).

c. Call the niDMM Control VI.

LabVIEW Block Diagram	C/C++ Function Call	
instrument handle Control Action	Call niDMM_Control with the following parameters: Instrument_Handle: The instrument handle from niDMM_init Control Action: Commit	

- d. On the calibrator, output the value listed in the *Calibrator Output* column in Table 10 for the current iteration. Set external sense and 2-wire compensation as shown in Table 10 for the current iteration. *Allow the calibrator output to settle before proceeding*.
- e. Wait for the specified time listed in the *Delay* column in Table 10 for the current iteration. This delay time is necessary to guarantee the calibrator signal has settled to within specifications.

- f. Call the niDMM Read VI.
 - For iterations containing the 0Ω measurement of each range, store the result as the offset null for that range.
 - For all other iterations, subtract the previously stored offset null for the corresponding range from the measurement taken.

LabVIEW Block Diagram	C/C++ Function Call	
	Call niDMM_read with the following parameters:	
instrument handle error in (no error) Measurement Maximum Time (msec)	Instrument_Handle: The instrument handle from niDMM_init Reading: Verify that this measurement falls between the tolerances listed in Table 23 Maximum_Time: -1	

- g. Verify that this measurement falls between the tolerances listed in Table 23. Tolerances are provided instead of absolute limits because your calibrator will have different discrete resistance values.
- 5. Repeat step 4 for each of the remaining iterations shown in Table 10.

		Calibrator Output			
Iteration	Range (Ω)	Resistance (Ω)	Delay (seconds)	2-Wire Compensation	External Sense
1		0	0.0	ON	ON
2	100	10	0.0	ON	ON
3		100	0.0	ON	ON
4		0	0.0	ON	ON
5	1 k	100	0.0	ON	ON
6		1 k	0.0	ON	ON
7		0	0.0	ON	ON
8	10 k	1 k	0.0	ON	ON
9		10 k	0.1	ON	ON

Table 10. 2-Wire Resistance Settings

		Calibrator Output			
Iteration	Range (Ω)	Resistance (Ω)	Delay (seconds)	2-Wire Compensation	External Sense
10		0	0.0	OFF	ON
11	100 k	10 k	0.1	OFF	ON
12		100 k	0.25	OFF	ON
13		0	0.0	OFF	ON
14	1 M	100 k	0.25	OFF	ON
15		1 M	1	OFF	ON
16		0	0.0	OFF	ON
17	10 M	1 M	1	OFF	ON
18		10 M	4	OFF	ON
19		0	0.0	OFF	OFF
20	100 M	10 M	4	OFF	OFF
21		100 M	4	OFF	OFF

Table 10. 2-Wire Resistance Settings (Continued)

- 6. Remove the Fluke 5440 cables, double banana plug, and two insulated, low EMF spade lugs from the HI and LO banana plug connectors on the NI 4065.
- 7. Plug in the insulated banana plug shorting bar across the HI and LO banana plug connectors on the NI 4065.
- 8. Wait two minutes for the thermal EMF to stabilize.

- 9. Refer to Table 11 for the appropriate range values as you complete the following steps:
 - a. Call the niDMM Config Measurement VI. The niDMM Config Measurement VI is polymorphic. To change the selected instance of this polymorphic VI, right-click the VI and choose **Select Type** followed by **Resolution in Digits**.

LabVIEW Block Diagram	C/C++ Function Call
Resolution in Digits instrument handle out Function error in (no error) Range	Call niDMM_ConfigureMeasurement Digits with the following parameters:
	Instrument_Handle: The instrument handle from niDMM_init Resolution_Digits: 6.5 Measurement_Function: NIDMM_VAL_2_WIRE_RES
	Range : The Range as shown in Table 11 for the current iteration

b. Set a writable niDMM property node.

c. Call the niDMM Read VI.

LabVIEW Block Diagram	C/C++ Function Call	
	Call niDMM_read with the following parameters:	
instrument handle error in (no error) Measurement Maximum Time (msec)	Instrument_Handle : The instrument handle from niDMM_init Reading : Verify that the measurement for 0Ω falls between the tolerances listed in Table 24 Maximum_Time : -1	

- d. Verify that the measurement for 0 Ω falls between the tolerances listed in Table 24.
- 10. Repeat step 9 for each of the remaining iterations shown in Table 11.

Iteration	Range
1	100 ΜΩ
2	10 M Ω
3	1 MΩ
4	100 k Ω
5	10 k Ω
6	1 kΩ
7	100 Ω

Table 11. 2-Wire Resistance Settings

You have completed verifying 2-wire resistance for the NI 4065. Select one of the following options:

- If you want to continue verifying other modes, go to the *Verifying DC Current* section.
- If you do *not* want to verify any additional modes *and* you are performing a *pre-adjustment* verification, call the niDMM Close VI.

LabVIEW Block Diagram	C/C++ Function Call	
instrument handle	Call niDMM_close with the following parameter:	
error in (no error)	handle from niDMM_init	

Verifying DC Current

To verify DC current for the NI 4065, complete the following steps:

- 1. Reset the calibrator.
- 2. Connect the NI 4065 and the Fluke 5700A/5720A calibrator using the Fluke 5440 cable, as shown in Figure 7 for the NI PXI/PCI/PCIe-4065 and Figure 8 for the NI USB-4065. Table 12 lists the cable connections.

Figure 7. NI PXI/PCI/PCIe Cable Connections for Current

Figure 8. USB Cable Connections for Current

Table 12.	Fluke 5440	Cable	Connections
	110100110	oubio	0011100110110

Banana Plug Connector (NI 4065)	Banana Plug Color (Fluke 5440 Cable)	Binding Post (Fluke 5700A/5720A Calibrator)
HI SENSE (NI PXI/PCI/PCIe-4065 only)	Red	OUTPUT HI
LO	Black	OUTPUT LO
I (NI USB-4065 only)	Red	OUTPUT HI
(No connection)	Blue	V GUARD

- 3. Wait two minutes for the thermal EMF to stabilize.
- 4. Call the niDMM Reset VI to reset the NI 4065 to a known state.

LabVIEW Block Diagram	C/C++ Function Call
error in (no error)	Call niDMM_reset with the following parameter: Instrument_Handle : The instrument handle from niDMM_init

- 5. Set the current output on the calibrator to NORM and output 0 A. Allow the calibrator to settle before proceeding.
- 6. Call the niDMM Config Measurement VI. The niDMM Config Measurement VI is polymorphic. To change the selected instance of this polymorphic VI, right-click the VI and choose **Select Type** followed by **Resolution in Digits**.

LabVIEW Block Diagram	C/C++ Function Call
Resolution in Digits instrument handle Function error in (no error) Range	Call niDMM_ConfigureMeasurement Digits with the following parameters:
	Instrument_Handle: The instrument
	Resolution Digits: 6.5
	Measurement_Function:
	NIDMM_VAL_DC_CURRENT
	Range : 0.01

7. Call the niDMM Read VI to configure the NI 4065 for a current mode before applying current.

LabVIEW Block Diagram	C/C++ Function Call
instrument handle instrument handle out error in (no error) instrument handle out Maximum Time (msec)	Call niDMM_read with the following parameter: Instrument_Handle: The instrument handle from niDMM_init

- 8. Refer to Table 13 for the appropriate calibrator outputs and parameter values as you complete the following steps:
 - a. Call the niDMM Config Measurement VI. The niDMM Config Measurement VI is polymorphic. To change the selected instance of this polymorphic VI, right-click the VI and choose **Select Type** followed by **Resolution in Digits**.

LabVIEW Block Diagram	C/C++ Function Call
Resolution in Digits instrument handle Function error in (no error) Range	Call niDMM_ConfigureMeasurement Digits with the following parameters:
	Instrument_Handle: The instrument
	handle from niDMM_init
	Resolution_Digits: 6.5
	Measurement_Function:
	NIDMM_VAL_DC_CURRENT
	Range : The Range as shown in Table 13
	for the current iteration

b. Set a writable niDMM property node (for iterations 1, 4, 7, and 10 only).

c. Call the niDMM Control VI.

LabVIEW Block Diagram	C/C++ Function Call
instrument handle	Call niDMM_Control with the following parameters: Instrument_Handle: The instrument handle from niDMM_init Control Action: Commit

- d. On the calibrator, output the value listed in the *Calibrator Output* column in Table 13 for the current iteration. *Allow the calibrator output to settle before proceeding*.
- e. Call the niDMM Read VI.

LabVIEW Block Diagram	C/C++ Function Call
	Call niDMM_read with the following parameters:
Instrument handle out error in (no error) Maximum Time (msec)	Instrument_Handle: The instrument handle from niDMM_init Reading: Verify that this measurement falls between the limits listed in Table 25 Maximum_Time: -1

- f. Verify that this measurement falls between the limits listed in Table 25.
- 9. Repeat step 8 for each of the remaining iterations shown in Table 13.

Iteration	Range (A)	Calibrator Output (A)
1	0.01	-10 m
2	0.01	0
3	0.01	10 m
4	0.1	-100 m
5	0.1	0
6	0.1	100 m
7	1	-1.0
8	1	0

Table 13. Do Guilleni Settinus	Table 13	. DC	Current	Settings
--------------------------------	----------	------	---------	----------

Table 13. DC Current Settings (Continued)

Iteration	Range (A)	Calibrator Output (A)
9	1	1.0
10	3	-2.2
11	3	0
12	3	2.2

You have completed verifying DC current for the NI 4065. Select one of the following options:

- If you want to continue verifying other modes, go to the *Verifying AC Current* section.
- If you do *not* want to verify any additional modes *and* you are performing a *pre-adjustment* verification, call the niDMM Close VI or the niDMM_close function to close the session.

LabVIEW Block Diagram	C/C++ Function Call
instrument handle Structure	Call niDMM_close with the following parameters
error in (no error)	Instrument_Handle: The instrument handle from niDMM_init

Verifying AC Current

To verify AC current for the NI 4065, complete the following steps:

- 1. Reset the calibrator.
- 2. Connect the NI 4065 and the Fluke 5700A/5720A calibrator using the Fluke 5440 cable, as shown in Figure 7. Table 12 lists the cable connections.
- 3. Call the niDMM Reset VI to reset the NI 4065 to a known state.

LabVIEW Block Diagram	C/C++ Function Call
instrument handle WINDIAN instrument handle out	Call niDMM_reset with the following parameter:
error in (no error)	Instrument_Handle : The instrument handle from niDMM_init

4. Set the current output on the calibrator to NORM and output 0 A. Allow the calibrator to settle before proceeding.

5. Call the niDMM Config Measurement VI. The niDMM Config Measurement VI is polymorphic. To change the selected instance of this polymorphic VI, right-click the VI and choose **Select Type** followed by **Resolution in Digits**.

LabVIEW Block Diagram	C/C++ Function Call
Resolution in Digits instrument handle Function error in (no error) Range	Call niDMM_ConfigureMeasurement Digits with the following parameters:
	Instrument_Handle: The instrument handle from niDMM_init Resolution_Digits: 6.5 Measurement_Function: NIDMM_VAL_AC_CURRENT Range: 0.01

6. Call the niDMM Read VI to configure the NI 4065 for a current mode before applying current.

LabVIEW Block Diagram	C/C++ Function Call
instrument handle instrument handle out	Call niDMM_read with the following parameters:
error in (no error) Heasurement	Instrument_Handle: The instrument handle from niDMM_init
Maximum Time (msec)	Maximum_Time: -1

- 7. Refer to Table 14 for the appropriate calibrator outputs and parameter values as you complete the following steps:
 - a. Call the niDMM Config Measurement VI. The niDMM Config Measurement VI is polymorphic. To change the selected instance of this polymorphic VI, right-click the VI and choose **Select Type** followed by **Resolution in Digits**.

LabVIEW Block Diagram	C/C++ Function Call	
Resolution in Digits instrument handle Function error in (no error) Range	Call niDMM_ConfigureMeasurement Digits with the following parameters:	
	Instrument_Handle: The instrument handle from niDMM_init Resolution_Digits: 6.5 Measurement_Function: NIDMM_VAL_AC_CURRENT Denge: The Pange as shown in Table 14	
	for the current iteration	

b. Set a writable niDMM property node (for iterations 1, 4, 7, and 10 only).

c. Call the niDMM Control VI.

LabVIEW Block Diagram	C/C++ Function Call
instrument handle Control Action	Call niDMM_Control with the following parameters: Instrument_Handle: The instrument handle from niDMM_init Control Action: Commit

- d. On the calibrator, output the value listed in the *Calibrator Output* column in Table 14 for the current iteration. *Allow the calibrator output to settle before proceeding*.
- e. Call the niDMM Read VI.

LabVIEW Block Diagram	C/C++ Function Call	
instrument handle	Call niDMM_read with the following parameters: Instrument_Handle: The instrument	
error in (no error)	handle from niDMM_init Reading : Verify that this measurement falls between the limits listed in Table 26 Maximum_Time : -1	

- f. Verify that this measurement falls between the limits listed in Table 26.
- 8. Repeat step 7 for each of the remaining iterations shown in Table 14.

		Calibrator Output	
Iteration	Range (A _{ac})	Amplitude (A)	Frequency
1	0.01	200 μ	1 kHz
2	0.01	1 m	1 kHz
3	0.01	10 m	1 kHz
4	0.1	2 m	1 kHz
5	0.1	10 m	1 kHz
6	0.1	100 m	1 kHz
7	0.5	10 m	1 kHz

Table 14. AC Current Settings

		Calibrator Output	
Iteration	Range (A _{ac})	Amplitude (A)	Frequency
8	0.5	50 m	1 kHz
9	0.5	500 m	1 kHz
10	3	60 m	1 kHz
11	3	300 m	1 kHz
12	3	2.2	1 kHz

Table 14. AC Current Settings (Continued)

You have completed verifying AC current for the NI 4065. Select one of the following options:

- If you do *not* want to verify other modes *and* you are performing a *post-adjustment* verification, go to the *Completing the Adjustment Procedures* section.
- If you do *not* want to verify any additional modes *and* you are performing a *pre-adjustment* verification, call the niDMM Close VI or the niDMM_close function to close the session.

Adjustment Procedures

This section explains how to adjust the NI 4065. You can choose to perform these adjustment procedures with or without performing the verification procedures first.

The parameters **Range**, **Resolution in Digits**, **Expected Measurement**, and **Frequency** used in VI and function calls in this section have floating point values. For example, if **Range** = 1, the floating point value is 1.0. Refer to the *NI Digital Multimeters Help* for more information about parameter values.

D

Note NI recommends repeating the verification procedures, using the 24-hour accuracy limits, after you perform these adjustment procedures. Reverification ensures the device you calibrated is operating within specifications after adjustment.

Caution If you skip any of the steps within a section of the adjustment procedures, the niDMM Close External Cal VI and the niDMM_ExtCalClose function do *not* allow you to store your new calibration coefficients. Instead, NI-DMM restores the original coefficients to the EEPROM.

Setting Up the Test Equipment

If you have not already set up the test equipment, complete the following steps:

- 1. Remove all connections from the input banana plug connectors on the NI 4065.
- 2. Verify that the calibrator has been calibrated within the time limits specified in the *Test Equipment* section, and that DC zeros calibration has been performed within the last 30 days. Consult the Fluke 5700A/5720A user documentation for instructions on calibrating these devices.

Note Ensure the calibrator is warmed up for at least 60 minutes before you begin this procedure.

- 3. Reset the calibrator.
- 4. If you have not already done so, allow the NI PXI/PCI/PCIe-4065 to warm up for 30 minutes within a powered-on chassis or PC and the NI USB-4065 to warm up for 50 minutes after it is plugged into a USB port on a powered-on PC.

Adjustment Procedures Initial Setup for Calibration

To initially set up the NI 4065 for calibration, complete the following steps:

- Fasten the connectors on one end of the Fluke 5440 cable to the NI 4065 HI and LO banana plug connectors. Fasten the connectors on the other end of the cable to the HI and LO calibrator binding posts, respectively. Figure 1 shows the correct connections for the NI PXI/PCI/PCIe-4065 and Figure 2 shows the correct connections for the NI USB-4065. Table 2 lists the cable connections.
- 2. If the cable was not previously connected in this configuration, wait two minutes for the thermal EMF to stabilize.

 \mathbb{N}

3. Call the niDMM Initialize External Cal VI with the **Instrument Descriptor** of the NI 4065 and your valid user password to output a calibration session (Cal Session) you can use to perform NI-DMM calibration or regular measurement functions.

LabVIEW Block Diagram	C/C++ Function Call
	Call niDMM_InitExtCal with the following parameters:
Calibration Password	Resource_Name : The resource
error in (no error)	Calibration_Password: Your valid user
	password Instrument_Handle: Cal Session

Notes You will use Cal Session in all subsequent VI and function calls.

Use the niDMM Set Cal Password VI or the niDMM_SetCalPassword function to change the password.

4. Call the niDMM Configure Powerline Frequency VI.

LabVIEW Block Diagram	C/C++ Function Call
instrument handle error in (no error) Powerline Frequency	Call niDMM_ConfigurePowerLineFrequency with the following parameters: Instrument_Handle: The instrument handle from niDMM_init PowerLine Frequency: Set this parameter to 50 or 60, depending on the powerline frequency (in hertz) powering your instruments; select 50 for 400 Hz powerline frequency

Adjusting Linearization

To adjust Linearization for the NI 4065, complete the following steps:

1. Output 1 V on the calibrator with the range locked to 2.2 V. This range prevents a 50 Ω calibrator output resistance from creating a voltage divider with the internal resistance of the NI 4065. *Allow the calibrator output to settle before proceeding*.

2. Call the niDMM Config Measurement VI. The niDMM Config Measurement VI is polymorphic. To change the selected instance of this polymorphic VI, right-click the VI and choose **Select Type** followed by **Resolution in Digits**.

LabVIEW Block Diagram	C/C++ Function Call
Resolution in Digits instrument handle Function error in (no error) Range	Call niDMM_ConfigureMeasurement Digits with the following parameters: Instrument_Handle: Cal Session Resolution_Digits: 6.5 Measurement_Function: NIDMM_VAL_DC_VOLTS Range: 1.0

3. Call the niDMM Control VI.

LabVIEW Block Diagram	C/C++ Function Call
instrument handle	Call niDMM_Control with the following parameters: Instrument_Handle: Cal Session Control Action: Commit

- 4. Refer to Table 15 for the appropriate calibrator output and parameter values as you complete the following steps:
 - a. On the calibrator, output the value listed in the *Calibrator Output* column in Table 15 for the current iteration. *Allow the calibrator output to settle before proceeding*.
 - b. Call the Cal Adjust Linearization VI.

LabVIEW Block Diagram	C/C++ Function Call
Expected Value instrument handle Function Range error out error in (no error) Input Resistance	Call niDMM_CalAdjustLinearization with the following parameters: Mode: NIDMM_VAL_DC_VOLTS Range: Set as shown in Table 15 for the current iteration Input_Resistance: NIDMM_VAL_GREATER_THAN_10 _GIGAOHM Expected_Value: Set as shown in Table 15 for the current iteration

5. Repeat step 4 for each of the remaining iterations listed in Table 15.

	Calibrator Output	niDMM Cal Adjust Linearization Parameters	
Iteration	Amplitude (V)	Range (V)	Expected Value
1	-1.0	1	-1.0
2	-0.8	1	-0.8
3	-0.6	1	-0.6
4	-0.4	1	-0.4
5	-0.2	1	-0.2
6	0.0	1	0.0
7	0.2	1	0.2
8	0.4	1	0.4
9	0.6	1	0.6
10	0.8	1	0.8
11	1.0	1	1.0

Table 15. Linear	zation Settings
------------------	-----------------

6. Reset the calibrator.

Adjusting DC Voltage

To adjust DC voltage for the NI 4065, complete the following steps:

1. Call the niDMM Reset VI.

LabVIEW Block Diagram	C/C++ Function Call
error in (no error)	Call niDMM_reset with the following parameter: Instrument_Handle: Cal Session

2. Call the niDMM Config Measurement VI. The niDMM Config Measurement VI is polymorphic. To change the selected instance of this polymorphic VI, right-click the VI and choose **Select Type** followed by **Resolution in Digits**.

LabVIEW Block Diagram	C/C++ Function Call
Resolution in Digits instrument handle Function error in (no error) Range	Call niDMM_ConfigureMeasurement Digits with the following parameters: Instrument_Handle: Cal Session Resolution_Digits: 6.5 Measurement_Function: NIDMM_VAL_DC_VOLTS Range: 300.0

3. Call the niDMM Control VI.

LabVIEW Block Diagram	C/C++ Function Call
instrument handle	Call niDMM_Control with the following parameters: Instrument_Handle: Cal Session Control Action: Commit

- 4. Refer to Table 16 for the appropriate calibrator output and parameter values as you complete the following steps:
 - a. On the calibrator, output the value listed in the *Calibrator Output* column in Table 16 for the current iteration. *Allow the calibrator output to settle before proceeding*.
 - b. Call the niDMM Cal Adjust Gain VI.

LabVIEW Block Diagram	C/C++ Function Call
	Call niDMM_CalAdjustGain with the following parameters:
Expected Value instrument handle Function Range error in (no error) Input Resistance	Instrument_Handle: Cal Session Mode: NIDMM_VAL_DC_VOLTS Range: Set as shown in Table 16 for the current iteration Input_Resistance: Set as shown in Table 16 for the current iteration Expected_Value: Set as shown in Table 16 for the current iteration

5. Repeat step 4 for each of the remaining iterations listed in Table 16.

	Calibrator Output	niDMM Cal Adjust Gain Parameters		
Iteration	Amplitude (V)	Range (V)	Expected Value	Input Resistance
1	300	300	300	NIDMM_VAL_10_MEGAOHM
2	-300	300	-300	NIDMM_VAL_10_MEGAOHM
3	100	100	100	NIDMM_VAL_10_MEGAOHM
4	-100	100	-100	NIDMM_VAL_10_MEGAOHM
5	10	10	10	NIDMM_VAL_GREATER_THAN_10_GIGAOHM
6	-10	10	-10	NIDMM_VAL_GREATER_THAN_10_GIGAOHM
7	1	1	1	NIDMM_VAL_GREATER_THAN_10_GIGAOHM
8	-1	1	-1	NIDMM_VAL_GREATER_THAN_10_GIGAOHM
9	0.1	0.1	0.1	NIDMM_VAL_GREATER_THAN_10_GIGAOHM
10	-0.1	0.1	-0.1	NIDMM_VAL_GREATER_THAN_10_GIGAOHM

Table 16. DC Voltage Settings

- 6. Output 0 V on the calibrator. *Allow the calibrator output to settle before proceeding.*
- 7. Wait 2 seconds to allow maximum settling on the calibrator.
- 8. Call the niDMM Cal Adjust Offset VI.

LabVIEW Block Diagram	C/C++ Function Call
	Call niDMM_CalAdjustOffset with the following parameters:
instrument handle Function Range error out error in (no error) Input Resistance	Instrument_Handle: Cal SessionMode: NIDMM_VAL_DC_VOLTS Range: 0.1 Input_Resistance: NIDMM_VAL_GREATER_THAN_10 _GIGAOHM

9. Call the niDMM Cal Adjust Offset VI.

LabVIEW Block Diagram	C/C++ Function Call
	Call niDMM_CalAdjustOffset with the following parameters:
instrument handle NORM instrument handle out Function Range error in (no error) Input Resistance	Instrument_Handle: Cal Session Mode: NIDMM_VAL_DC_VOLTS Range: 1 Input_Resistance: NIDMM_VAL_GREATER_THAN_10 _GIGAOHM

10. Call the niDMM Cal Adjust Offset VI.

LabVIEW Block Diagram	C/C++ Function Call
	Call niDMM_CalAdjustOffset with the following parameters:
instrument handle Function Range error in (no error) Input Resistance	Instrument_Handle: Cal Session Mode: NIDMM_VAL_DC_VOLTS Range: 10 Input_Resistance: NIDMM_VAL_GREATER_THAN_10 _GIGAOHM

11. Call the niDMM Cal Adjust Offset VI.

LabVIEW Block Diagram	C/C++ Function Call
inctrument handle and NIDMM services inctrument handle out	Call niDMM_CalAdjustOffset with the following parameters:
Function	Instrument_Handle: Cal Session
error in (no error)	Range: 100
	Input_Resistance:
	NIDMM_VAL_10_MEGAOHM

LabVIEW Block Diagram	C/C++ Function Call
	Call niDMM_CalAdjustOffset with the following parameters:
instrument handle out Function Range error in (no error) Input Resistance	Instrument_Handle: Cal Session Mode: NIDMM_VAL_DC_VOLTS Range: 300 Input_Resistance: NIDMM_VAL_10_MEGAOHM

13. Reset the calibrator.

Adjusting 4-Wire Resistance

To adjust 4-wire resistance for the NI 4065, complete the following steps:

- Fasten the connectors on one end of the Fluke 5440 cable to the NI 4065 *HI SENSE* and *LO SENSE* banana plug connectors. Fasten the connectors on the other end of the cable to the *HI SENSE* and *LO SENSE* calibrator binding posts, respectively. Figure 3 shows the correct connections for the NI PXI/PCI/PCIe-4065 and Figure 4 shows the correct connections for the NI USB-4065. Table 2 lists the cable connections.Table 7 lists the cable connections.
- 2. Wait two minutes for the thermal EMF to stabilize.
- 3. Call the niDMM Config Measurement VI. The niDMM Config Measurement VI is polymorphic. To change the selected instance of this polymorphic VI, right-click the VI and choose **Select Type** followed by **Resolution in Digits**.

LabVIEW Block Diagram	C/C++ Function Call
Resolution in Digits instrument handle Function error in (no error) Range	Call niDMM_ConfigureMeasurement Digits with the following parameters: Instrument_Handle: Cal Session Resolution_Digits: 6.5
	Measurement_Function: NIDMM VAL 4 WIRE RES
	Range : 1 M

4. Call the niDMM Control VI.

LabVIEW Block Diagram	C/C++ Function Call
instrument handle	Call niDMM_Control with the following parameters: Instrument_Handle: Cal Session Control Action: Commit

- 5. Refer to Table 17 for the appropriate calibrator output and parameter values as you complete the following steps:
 - a. On the calibrator, output the value listed in the *Calibrator Output* column in Table 17 for the current iteration. *Allow the calibrator output to settle before proceeding*.

Note For all 4-wire measurements, external sense on the calibrator is turned on.

LabVIEW Block Diagram	C/C++ Function Call
	Call niDMM_CalAdjustGain with the following parameters:
Expected Value instrument handle with the instrument handle out Function Range error in (no error) Input Resistance	Instrument_Handle: Cal Session Mode: NIDMM_VAL_4_WIRE_RES Range: Set as shown in Table 17 for the current iteration Input_Resistance: NIDMM_VAL_RESISTANCE_NA Expected_Value: Set as shown in Table 17 for the current iteration

b. Call the niDMM Cal Adjust Gain VI.

c. Call the niDMM Cal Adjust Offset VI (for iterations 7, 8, 9, 10, and 11 only).

LabVIEW Block Diagram	C/C++ Function Call
	Call niDMM_CalAdjustOffset with the following parameters:
instrument handle Function Function Range error in (no error) Input Resistance	Instrument_Handle: Cal Session Mode: NIDMM_VAL_4_WIRE_RES Range: Set as shown in Table 17 for the current iteration Input_Resistance: NIDMM_VAL_RESISTANCE_NA

6. Repeat step 5 for each of the remaining iterations listed in Table 17.

		niDMM Cal Adjust Gain Parameters	
Iteration	Calibrator Output (Ω)	Range (Ω)	Expected Value
1	1 M	1 M	the display on the calibrator for 1 M $\! \Omega$
2	190 k	1 M	the display on the calibrator for 190 k $arOmega$
3	100 k	100 k	the display on the calibrator for 100 k $arOmega$
4	10 k	10 k	the display on the calibrator for 10 k $arOmega$
5	1 k	1 k	the display on the calibrator for 1 k $arOmega$
6	100	100	the display on the calibrator for 100 $arOmega$
7	0	1 M	the display on the calibrator for 0 $arOmega$
8	0	100 k	the display on the calibrator for 0 $arOmega$
9	0	10 k	the display on the calibrator for 0 $arOmega$
10	0	1 k	the display on the calibrator for 0 $arOmega$
11	0	100	the display on the calibrator for 0 $arOmega$

Table 17. 4-Wire Resistance Settings

7. Reset the calibrator.

Adjusting 2-Wire Resistance

To adjust 2-wire resistance for the NI 4065, complete the following steps:

- 1. Connect the NI 4065 and the Fluke 5700A/5720A calibrator using two sets of Fluke 5440 cables, a double banana plug, and two insulated, low EMF spade lugs, as shown in Figure 5. Table 9 lists the cable connections.
- 2. Wait two minutes for the thermal EMF to stabilize.
- 3. Call the niDMM Config Measurement VI. The niDMM Config Measurement VI is polymorphic. To change the selected instance of this polymorphic VI, right-click the VI and choose **Select Type** followed by **Resolution in Digits**.

LabVIEW Block Diagram	C/C++ Function Call
Resolution in Digits instrument handle Function error in (no error) Range	Call niDMM_ConfigureMeasurement Digits with the following parameters: Instrument_Handle: Cal Session Resolution_Digits: 6.5 Measurement_Function: NIDMM_VAL_2_WIRE_RES Range: 100 M

4. Call the niDMM Control VI.

LabVIEW Block Diagram	C/C++ Function Call
instrument handle	Call niDMM_Control with the following parameters: Instrument_Handle: Cal Session Control Action: Commit

5. Output 100 M Ω from the calibrator with 2-wire compensation and external sense turned off. *Allow the calibrator output to settle before proceeding*.

LabVIEW Block Diagram	C/C++ Function Call
	Call niDMM_CalAdjustGain with the following parameters:
Expected Value instrument handle Function Range error out error in (no error) Input Resistance	Instrument_Handle: Cal Session Mode: NIDMM_VAL_2_WIRE_RES Range: 100 M Input_Resistance: NIDMM_VAL_RESISTANCE_NA Expected_Value: The display on the calibrator for 100 MΩ

- 7. Output 19 M Ω from the calibrator with 2-wire compensation and external sense turned off. *Allow the calibrator output to settle before proceeding*.
- 8. Call the niDMM Cal Adjust Gain VI.

LabVIEW Block Diagram	C/C++ Function Call
	Call niDMM_CalAdjustGain with the following parameters:
Expected Value instrument handle Function Range error in (no error) Input Resistance	Instrument_Handle: Cal Session Mode: NIDMM_VAL_2_WIRE_RES Range: 100 M Input_Resistance: NIDMM_VAL_RESISTANCE_NA Expected_Value: The display on the calibrator for 19 MΩ

9. Output 10 M Ω from the calibrator with 2-wire compensation turned off, but with external sense turned on. *Allow the calibrator output to settle before proceeding*.

LabVIEW Block Diagram	C/C++ Function Call
	Call niDMM_CalAdjustGain with the following parameters:
Expected Value instrument handle Function Range error in (no error) Input Resistance	Instrument_Handle: Cal Session Mode: NIDMM_VAL_2_WIRE_RES Range: 10 M Input_Resistance: NIDMM_VAL_RESISTANCE_NA Expected_Value: The display on the calibrator for 10 MΩ

- 11. Output 1.9 M Ω from the calibrator with 2-wire compensation turned off, but with external sense turned on. *Allow the calibrator output to settle before proceeding*.
- 12. Call the niDMM Cal Adjust Gain VI.

LabVIEW Block Diagram	C/C++ Function Call
	Call niDMM_CalAdjustGain with the following parameters:
Expected Value instrument handle Function Range error in (no error) Input Resistance	Instrument_Handle: Cal Session Mode: NIDMM_VAL_2_WIRE_RES Range: 10 M Input_Resistance: NIDMM_VAL_RESISTANCE_NA Expected_Value: The display on the calibrator for 1.9 MΩ

13. Output 1 M Ω from the calibrator with 2-wire compensation turned off, but with external sense turned on. *Allow the calibrator output to settle before proceeding*.

LabVIEW Block Diagram	C/C++ Function Call
	Call niDMM_CalAdjustGain with the following parameters:
Expected Value instrument handle Function Range error out error in (no error) Input Resistance	Instrument_Handle: Cal Session Mode: NIDMM_VAL_2_WIRE_RES Range: 1 M Input_Resistance: NIDMM_VAL_RESISTANCE_NA Expected_Value: The display on the calibrator for 1 MΩ

- 15. Output 100 k Ω from the calibrator with 2-wire compensation turned off, but with external sense turned on. *Allow the calibrator output to settle before proceeding*.
- 16. Call the niDMM Cal Adjust Gain VI.

LabVIEW Block Diagram	C/C++ Function Call
	Call niDMM_CalAdjustGain with the following parameters:
Expected Value instrument handle Function Range error in (no error) Input Resistance	Instrument_Handle: Cal Session Mode: NIDMM_VAL_2_WIRE_RES Range: 100 k Input_Resistance: NIDMM_VAL_RESISTANCE_NA Expected_Value: The display on the calibrator for 100 kΩ

17. Output 10 k Ω from the calibrator with 2-wire compensation and external sense turned on.

 Call the niDMM Config Measurement VI. The niDMM Config Measurement VI is polymorphic. To change the selected instance of this polymorphic VI, right-click the VI and choose Select Type followed by Resolution in Digits.

LabVIEW Block Diagram	C/C++ Function Call
Resolution in Digits instrument handle Function error in (no error) Range	Call niDMM_ConfigureMeasurement Digits with the following parameters: Instrument_Handle: Cal Session Resolution_Digits: 6.5 Measurement_Function: NIDMM_VAL_2_WIRE_RES Range: 10 k

19. Call the niDMM Control VI.

LabVIEW Block Diagram	C/C++ Function Call
instrument handle	Call niDMM_Control with the following parameters: Instrument_Handle: Cal Session Control Action: Commit

- 20. Wait 10 seconds to allow maximum settling on the calibrator after turning 2-wire compensation on.
- 21. Call the niDMM Cal Adjust Gain VI.

LabVIEW Block Diagram	C/C++ Function Call
	Call niDMM_CalAdjustGain with the following parameters:
Expected Value instrument handle Function Range error in (no error) Input Resistance	Instrument_Handle: Cal Session Mode: NIDMM_VAL_2_WIRE_RES Range: 10 k Input_Resistance: NIDMM_VAL_RESISTANCE_NA Expected_Value: The display on the calibrator for 10 kΩ

22. Output 1 k Ω from the calibrator with 2-wire compensation and external sense turned on. *Allow the calibrator output to settle before proceeding*.

LabVIEW Block Diagram	C/C++ Function Call
	Call niDMM_CalAdjustGain with the following parameters:
Expected Value instrument handle Function Range error in (no error) Input Resistance	Instrument_Handle: Cal Session Mode: NIDMM_VAL_2_WIRE_RES Range: 1 k Input_Resistance: NIDMM_VAL_RESISTANCE_NA Expected_Value: The display on the calibrator for 1 kΩ

- 24. Output 100 Ω from the calibrator with 2-wire compensation and external sense turned on. *Allow the calibrator output to settle before proceeding*.
- 25. Call the niDMM Cal Adjust Gain VI.

LabVIEW Block Diagram	C/C++ Function Call
	Call niDMM_CalAdjustGain with the following parameters:
Expected Value instrument handle water instrument handle out Function Range error in (no error) Input Resistance	Instrument_Handle: Cal Session Mode: NIDMM_VAL_2_WIRE_RES Range: 100 Input_Resistance: NIDMM_VAL_RESISTANCE_NA Expected_Value: The display on the calibrator for 100 Ω

26. Output 0 Ω from the calibrator with 2-wire compensation turned off, but with external sense turned on. *Allow the calibrator output to settle before proceeding*.

LabVIEW Block Diagram	C/C++ Function Call
	Call niDMM_CalAdjustGain with the following parameters:
Expected Value	Instrument_Handle: Cal Session Mode: NIDMM_VAL_2_WIRE_RES Range: 100 M Input_Resistance: NIDMM_VAL_RESISTANCE_NA Expected_Value: The display on the calibrator for 0 Ω

28. Call the niDMM Cal Adjust Gain VI.

LabVIEW Block Diagram	C/C++ Function Call
	Call niDMM_CalAdjustGain with the following parameters:
Expected Value instrument handle Function Range error out error in (no error) Input Resistance	Instrument_Handle: Cal Session Mode: NIDMM_VAL_2_WIRE_RES Range: 10 M Input_Resistance: NIDMM_VAL_RESISTANCE_NA Expected_Value: The display on the calibrator for 0 Ω

29. Call the niDMM Cal Adjust Gain VI.

LabVIEW Block Diagram	C/C++ Function Call
	Call niDMM_CalAdjustGain with the following parameters:
Expected Value instrument handle Function Range error in (no error) Input Resistance	Instrument_Handle: Cal Session Mode: NIDMM_VAL_2_WIRE_RES Range: 1 M Input_Resistance: NIDMM_VAL_RESISTANCE_NA Expected_Value: The display on the calibrator for 0 Ω

LabVIEW Block Diagram	C/C++ Function Call
	Call niDMM_CalAdjustGain with the following parameters:
Expected Value instrument handle Function Range error in (no error) Input Resistance	Instrument_Handle: Cal Session Mode: NIDMM_VAL_2_WIRE_RES Range: 100 k Input_Resistance: NIDMM_VAL_RESISTANCE_NA Expected_Value: The display on the calibrator for 0 Ω

- 31. Output 0 Ω from the calibrator with 2-wire compensation and external sense turned on. *Allow the calibrator output to settle before proceeding*.
- 32. Call the niDMM Cal Adjust Gain VI.

LabVIEW Block Diagram	C/C++ Function Call
	Call niDMM_CalAdjustGain with the following parameters:
Expected Value instrument handle out instrument handle out Function Range error out error in (no error) Input Resistance	Instrument_Handle: Cal Session Mode: NIDMM_VAL_2_WIRE_RES Range: 10 k Input_Resistance: NIDMM_VAL_RESISTANCE_NA Expected_Value: The display on the calibrator for 0 Ω

33. Call the niDMM Cal Adjust Gain VI.

LabVIEW Block Diagram	C/C++ Function Call
	Call niDMM_CalAdjustGain with the following parameters:
Expected Value instrument handle water instrument handle out Function Range error in (no error) Input Resistance	Instrument_Handle: Cal Session Mode: NIDMM_VAL_2_WIRE_RES Range: 1 k Input_Resistance: NIDMM_VAL_RESISTANCE_NA Expected_Value: The display on the calibrator for 0 Ω
34. Call the niDMM Cal Adjust Gain VI.

LabVIEW Block Diagram	C/C++ Function Call
	Call niDMM_CalAdjustGain with the following parameters:
Expected Value instrument handle Function Range error in (no error) Input Resistance	Instrument_Handle: Cal Session Mode: NIDMM_VAL_2_WIRE_RES Range: 100 Input_Resistance: NIDMM_VAL_RESISTANCE_NA Expected_Value: The display on the calibrator for 0 Ω

- 35. Reset the calibrator.
- 36. Plug in the insulated banana plug shorting bar across the HI and LO banana plug connectors on the NI 4065.
- 37. Wait two minutes for the thermal EMF to stabilize.
- 38. Call the niDMM Cal Adjust Offset VI.

LabVIEW Block Diagram	C/C++ Function Call
	Call niDMM_CalAdjustOffset with the following parameters:
instrument handle	Instrument_Handle: Cal Session Mode: NIDMM_VAL_2_WIRE_RES
Input Resistance	Input_Resistance:
	NIDMM_VAL_RESISTANCE_NA

39. Call the niDMM Cal Adjust Offset VI.

LabVIEW Block Diagram	C/C++ Function Call
	Call niDMM_CalAdjustOffset with the following parameters:
Range	Instrument_Handle: Cal Session Mode: NIDMM_VAL_2_WIRE_RES
error in (no error) and Input Resistance	Range: 10 M Input Resistance:
	NIDMM_VAL_RESISTANCE_NA

LabVIEW Block Diagram	C/C++ Function Call
	Call niDMM_CalAdjustOffset with the following parameters:
instrument handle Function Range error in (no error) Input Resistance	Instrument_Handle: Cal Session Mode: NIDMM_VAL_2_WIRE_RES Range: 1 M Input_Resistance: NIDMM_VAL_RESISTANCE_NA

41. Call the niDMM Cal Adjust Offset VI.

LabVIEW Block Diagram	C/C++ Function Call
	Call niDMM_CalAdjustOffset with the following parameters:
instrument handle Function Range error in (no error) Input Resistance	Instrument_Handle: Cal Session Mode: NIDMM_VAL_2_WIRE_RES Range: 100 k Input_Resistance: NIDMM_VAL_RESISTANCE_NA

42. Call the niDMM Cal Adjust Offset VI.

LabVIEW Block Diagram	C/C++ Function Call
	Call niDMM_CalAdjustOffset with the following parameters:
Function	Instrument_Handle: Cal Session
error in (no error)	Range: 10 k
Input Resistance	Input_Resistance:
	NIDMM_VAL_RESISTANCE_NA

LabVIEW Block Diagram	C/C++ Function Call
· · · · · · · · · · · · · · · · · · ·	Call niDMM_CalAdjustOffset with the following parameters:
instrument handle with the second sec	Instrument_Handle: Cal Session Mode: NIDMM_VAL_2_WIRE_RES Range: 1 k Input_Resistance: NIDMM_VAL_RESISTANCE_NA

44. Call the niDMM Cal Adjust Offset VI.

LabVIEW Block Diagram	C/C++ Function Call
instrument handle	Call niDMM_CalAdjustOffset with the following parameters: Instrument_Handle: Cal Session Mode: NIDMM_VAL_2_WIRE_RES
error in (no error) and Input Resistance	Range: 100 Input_Resistance: NIDMM_VAL_RESISTANCE_NA

45. Call the niDMM Cal Adjust Miscellaneous VI.

LabVIEW Block Diagram	C/C++ Function Call
	Call niDMM_CalAdjustMisc with the following parameters:
error in (no error)	Instrument_Handle: Cal_Session Type: NIDMM_EXTCAL_MISCCAL_SECTION

Adjusting AC Voltage

To adjust AC voltage for the NI 4065, complete the following steps:

1. Call the niDMM Config Measurement VI. The niDMM Config Measurement VI is polymorphic. To change the selected instance of this polymorphic VI, right-click the VI and choose **Select Type** followed by **Resolution in Digits**.

LabVIEW Block Diagram	C/C++ Function Call
Resolution in Digits instrument handle Function error in (no error) Range	Call niDMM_ConfigureMeasurement Digits with the following parameters: Instrument_Handle: Cal Session Resolution_Digits: 6.5 Measurement_Function: NIDMM_VAL_AC_VOLTS Range: 300

2. Call the niDMM Control VI.

LabVIEW Block Diagram	C/C++ Function Call
instrument handle	Call niDMM_Control with the following parameters: Instrument_Handle: Cal Session Control Action: Commit

- 3. Refer to Table 18 for the appropriate calibrator output and parameter values as you complete the following steps:
 - a. On the calibrator, output the value listed in the *Calibrator Output* column in Table 18 for the current iteration. *Allow the calibrator output to settle before proceeding*.

b. Call the niDMM Cal Adjust Gain VI.

LabVIEW Block Diagram	C/C++ Function Call
	Call niDMM_CalAdjustGain with the following parameters:
Expected Value instrument handle Function Range error in (no error) Input Resistance	Instrument_Handle: Cal Session Mode: NIDMM_VAL_AC_VOLTS Range: Set as shown in Table 18 for the current iteration Input_Resistance: NIDMM_VAL_10_MEGAOHM Expected_Value: Set as shown in Table 18 for the current iteration

4. Repeat step 3 for each of the remaining iterations listed in Table 18.

	Calibrator O	ıtput	niDMM Cal A	Adjust Gain Parameters
Iteration	Amplitude (V)	f (kHz)	Range (V)	Expected Value
1	200	1	300	200
2	100	1	300	100
3	4	1	300	4
4	20	1	20	20
5	10	1	20	10
6	0.4	1	20	0.4
7	2	1	2	2
8	1	1	2	1
9	0.04	1	2	0.04
10	0.2	1	0.2	0.2
11	0.1	1	0.2	0.1
12	4 m	1	0.2	4 m

Table 18. AC Voltage Settings

5. Reset the calibrator.

Adjusting DC Current

To adjust DC current for the NI 4065, complete the following steps:

1. If you are using an NI PXI/PCI/PCIe-4065, fasten the connectors on one end of the Fluke 5440 cable to the HI SENSE and LO banana plug connectors, and fasten the connectors on the other end of the cable to the HI and LO calibrator binding posts, respectively. Figure 7 shows the correct connections. Table 12 lists the cable connections.

If you are using an NI USB-4065, fasten the connectors on one end of the Fluke 5440 cable to the I and LO banana plug connectors, and fasten the connectors on the other end of the cable to the HI and LO calibrator binding posts, respectively. Figure 8 shows the correct connections. Table 12 lists the cable connections.

- 2. Wait two minutes for the thermal EMF to stabilize.
- 3. Call the niDMM Reset VI to reset the NI 4065 to a known state.

LabVIEW Block Diagram	C/C++ Function Call
error in (no error)	Call niDMM_reset with the following parameter:
	Instrument_Handle: Cal Session

4. Call the niDMM Config Measurement VI. The niDMM Config Measurement VI is polymorphic. To change the selected instance of this polymorphic VI, right-click the VI and choose **Select Type** followed by **Resolution in Digits**.

LabVIEW Block Diagram	C/C++ Function Call
Resolution in Digits instrument handle Function error in (no error) Range	Call niDMM_ConfigureMeasurement Digits with the following parameters: Instrument_Handle: Cal Session Resolution_Digits: 6.5 Measurement_Function: NIDMM_VAL_DC_CURRENT Range: 1.0

5. Call the niDMM Control VI.

LabVIEW Block Diagram	C/C++ Function Call
instrument handle	Call niDMM_Control with the following parameters: Instrument_Handle: Cal Session Control Action: Commit

Note Configure the DMM for current mode before applying a current from the calibrator.

- 6. Set the current output on the calibrator to NORM and output 0.01 A. *Allow the calibrator output to settle before proceeding.*
- 7. Call the niDMM Cal Adjust Gain VI.

LabVIEW Block Diagram	C/C++ Function Call
	Call niDMM_CalAdjustGain with the following parameters:
Expected Value instrument handle with the second s	Instrument_Handle: Cal Session Mode: NIDMM_VAL_DC_CURRENT Range: 0.01 Input_Resistance: NIDMM_VAL_RESISTANCE_NA Expected_Value: 0.01

- 8. Output –0.01 A on the calibrator. *Allow the calibrator output to settle before proceeding.*
- 9. Call the niDMM Cal Adjust Gain VI.

LabVIEW Block Diagram	C/C++ Function Call
Expected Value instrument handle with the second se	Call niDMM_CalAdjustGain with the following parameters:
	Instrument_Handle: Cal Session
	Mode: NIDMM_VAL_DC_CURRENT
	Range: 0.01
	Input_Resistance:
	NIDMM_VAL_RESISTANCE_NA
	Expected_Value: -0.01

10. Output 0 A on the calibrator. *Allow the calibrator output to settle before proceeding.*

LabVIEW Block Diagram	C/C++ Function Call
instrument handle Function Range error in (no error) Input Resistance	Call niDMM_CalAdjustOffset with the following parameters:
	Mode: NIDMM_VAL_DC_CURRENT Range: 0.01
	Input_Resistance: NIDMM_VAL_RESISTANCE_NA

- 12. Output 0.1 A on the calibrator. *Allow the calibrator output to settle before proceeding*.
- 13. Call the niDMM Cal Adjust Gain VI.

LabVIEW Block Diagram	C/C++ Function Call
	Call niDMM_CalAdjustGain with the following parameters:
Expected Value instrument handle ware instrument handle out Function Range error in (no error) Input Resistance	Instrument_Handle: Cal Session Mode: NIDMM_VAL_DC_CURRENT Range: 0.1 Input_Resistance: NIDMM_VAL_RESISTANCE_NA Expected_Value: 0.1

- 14. Output –0.1 A on the calibrator. *Allow the calibrator output to settle before proceeding.*
- 15. Call the niDMM Cal Adjust Gain VI.

LabVIEW Block Diagram	C/C++ Function Call
Expected Value instrument handle out Function Range error in (no error) Input Resistance	Call niDMM_CalAdjustGain with the following parameters:
	Instrument_Handle: Cal Session Mode: NIDMM_VAL_DC_CURRENT Range: 0.1 Input Resistance:
	NIDMM_VAL_RESISTANCE_NA Expected_Value: -0.1

16. Output 0 A on the calibrator. *Allow the calibrator output to settle before proceeding.*

LabVIEW Block Diagram	C/C++ Function Call
instrument handle Function Range error in (no error) Input Resistance	Call niDMM_CalAdjustOffset with the following parameters:
	Instrument_Handle: Cal Session
	Range: 0.1
	Input_Resistance:
	NIDMM_VAL_RESISTANCE_NA

- 18. Output 2.2 A on the calibrator. *Allow the calibrator output to settle before proceeding.*
- 19. Call the niDMM Cal Adjust Gain VI.

- 20. Output –2.2 A on the calibrator. *Allow the calibrator output to settle before proceeding*.
- 21. Call the niDMM Cal Adjust Gain VI.

LabVIEW Block Diagram	C/C++ Function Call
	Call niDMM_CalAdjustGain with the following parameters:
Expected Value instrument handle warment handle out Function Range error in (no error) Input Resistance	Instrument_Handle: Cal Session Mode: NIDMM_VAL_DC_CURRENT Range: 3 Input_Resistance: NIDMM_VAL_RESISTANCE_NA Expected_Value: -2.2

22. Output 1 A on the calibrator. *Allow the calibrator output to settle before proceeding.*

23. Call the niDMM Cal Adjust Gain VI.

LabVIEW Block Diagram	C/C++ Function Call
	Call niDMM_CalAdjustGain with the following parameters:
Expected Value instrument handle Function Range error in (no error) Input Resistance	Instrument_Handle: Cal Session Mode: NIDMM_VAL_DC_CURRENT Range: 1 Input_Resistance: NIDMM_VAL_RESISTANCE_NA Expected_Value: 1

- 24. Output –1 A on the calibrator. *Allow the calibrator output to settle before proceeding.*
- 25. Call the niDMM Cal Adjust Gain VI.

LabVIEW Block Diagram	C/C++ Function Call
Expected Value instrument handle out Function Range error in (no error) Input Resistance	Call niDMM_CalAdjustGain with the following parameters:
	Instrument_Handle: Cal Session Mode: NIDMM_VAL_DC_CURRENT Range: 1 Input_Resistance: NIDMM_VAL_RESISTANCE_NA
	Expected_Value: -1

- 26. Output 0 A on the calibrator.
- 27. Wait 5 seconds before making a measurement to allow thermal EMF to settle.
- 28. Call the niDMM Cal Adjust Offset VI.

LabVIEW Block Diagram	C/C++ Function Call	
instrument handle www.NINH	Call niDMM_CalAdjustOffset with the following parameters:	
	Instrument_Handle: Cal Session	
Range error out	Mode: NIDMM_VAL_DC_CURRENT	
error in (no error) ******	Range: 3	
Input Resistance	Input_Resistance:	
	NIDMM_VAL_RESISTANCE_NA	

LabVIEW Block Diagram	C/C++ Function Call	
	Call niDMM_CalAdjustOffset with the following parameters:	
instrument handle Function Range error in (no error) Input Resistance	Instrument_Handle: Cal Session Mode: NIDMM_VAL_DC_CURRENT Range: 1 Input_Resistance:	
	NIDMM_VAL_RESISTANCE_NA	

30. Reset the Calibrator.

Adjusting AC Current

To adjust AC current for the NI 4065, complete the following steps:

- 1. Refer to Table 19 for the appropriate calibrator output and parameter values as you complete the following steps:
 - a. Call the niDMM Config Measurement VI. The niDMM Config Measurement VI is polymorphic. To change the selected instance of this polymorphic VI, right-click the VI and choose **Select Type** followed by **Resolution in Digits**.

LabVIEW Block Diagram	C/C++ Function Call
Resolution in Digits instrument handle Function error in (no error) Range	Call niDMM_ConfigureMeasurement Digits with the following parameters: Instrument_Handle: Cal Session Resolution_Digits: 6.5 Measurement_Function: NIDMM_VAL_DC_CURRENT Range: 1.0

b. Call the niDMM Control VI.

LabVIEW Block Diagram	C/C++ Function Call
instrument handle and the instrument handle out	Call niDMM_Control with the following parameters:
Control Action	Instrument_Handle: Cal Session
error in (no error)	Control Action: Commit

Note Configure the DMM for current mode before applying a current from the calibrator.

 \mathbb{N}

- c. On the calibrator, output the value listed in the *Calibrator Output* column in Table 19 for the current iteration. *Allow the calibrator output to settle before proceeding*.
- d. Call the niDMM Cal Adjust Gain VI.

LabVIEW Block Diagram	C/C++ Function Call
	Call niDMM_CalAdjustGain with the following parameters:
Expected Value instrument handle with the instrument handle out Function Range error in (no error) Input Resistance	Instrument_Handle: Cal Session Mode: NIDMM_VAL_AC_CURRENT Range: Set as shown in Table 19 for the current iteration Input_Resistance: NIDMM_VAL_RESISTANCE_NA Expected_Value: Set as shown in Table 19 for the current iteration

2. Repeat step 1 for each of the remaining iterations listed in Table 19.

	Calibrator O	utput	niDMM Cal Adjust Gain Parameters		
Iteration	Amplitude (A)	f (kHz)	Range (A)	Expected Value (A)	
1	2.2	1	3	2.2	
2	1.1	1	3	1.1	
3	0.06	1	3	0.06	
4	0.5	1	0.5	0.5	
5	0.25	1	0.5	0.25	
6	0.01	1	0.5	0.01	
7	0.1	1	0.1	0.1	
8	0.05	1	0.1	0.05	
9	2 m	1	0.1	2 m	
10	0.01	1	0.01	0.01	
11	5 m	1	0.01	5 m	
12	200 µ	1	0.01	200 m	

 Table 19.
 AC Current Settings

3. Reset the calibrator.

Completing the Adjustment Procedures

Call the niDMM Close External Cal VI to complete the adjustment procedure for the NI 4065 and close the session.

LabVIEW Block Diagram	C/C++ Function Call
	Call niDMM_CloseExtCal with the following parameters:
instrument handle	Instrument_Handle: Cal Session Action: NIDMM_EXTCAL_ACTION_SAVE if the results of the calibration are satisfactory, and you want to save the new calibration coefficients to the EEPROM. Otherwise, Action: NIDMM_EXTCAL_ACTION_ABORT if the results of the calibration are unsatisfactory, and you want to restore the original calibration coefficients to the EEPROM.

Verification Limits

This section includes the verification limits for DC voltage, AC voltage, 4-wire resistance, 2-wire resistance, DC current, and AC current for the NI 4065. Compare these limits to the results in the *Verification Procedures* section.

Note Use the values in the 24-Hour Limits column for a post-adjustment verification *only*. Otherwise, use the values in the 1-Year Limits column.

Limits in the following tables are based upon the August 2010 edition of the *NI 4065 Specifications*. Refer to the most recent NI 4065 Specifications online at ni.com/manuals. If a more recent edition of the specifications is available, recalculate the limits based upon the latest specifications.

DC Voltage

Calibrator		Input	1-Year Limits		24-Hour	Limits
Amplitude	Range (V)	Resistance	Lower	Upper	Lower	Upper
0 V	1	>10 GΩ/10 MΩ	-12 μV	12 µV	-8 μV	8 μV
0 V	10	>10 GΩ/10 MΩ	-120 μV	120 µV	$-70 \ \mu V$	70 µV
0 V	100	10 MΩ	-1.2 mV	1.2 mV	-0.8 mV	0.8 mV
0 V	300	10 MΩ	-12 mV	12 mV	-7.2 mV	7.2 mV
100 mV	100 m	>10 GΩ/10 MΩ	0.0999875 V	0.1000125 V	0.099994 V	0.100006 V
-100 mV	100 m	>10 GΩ/10 MΩ	-0.1000125 V	-0.0999875 V	-0.100006 V	-0.099994 V
1 V	1	>10 GΩ/10 MΩ	0.999898 V	1.000102 V	0.999972 V	1.000028 V
-1 V	1	>10 GΩ/10 MΩ	-1.000102 V	-0.999898 V	-1.000028 V	-0.999972 V
10 V	10	>10 GΩ/10 MΩ	9.99898 V	10.00102 V	9.99978 V	10.00022 V
-10 V	10	>10 GΩ/10 MΩ	-10.00102 V	-9.99898 V	-10.00022 V	–9.99978 V
100 V	100	10 MΩ	99.9878 V	100.0122 V	99.9972 V	100.0028 V
-100 V	100	10 MΩ	-100.0122 V	–99.9878 V	-100.0028 V	–99.9972 V
300 V	300	10 MΩ	299.955 V	300.045 V	299.9868 V	300.0132 V
-300 V	300	10 MΩ	-300.045 V	–299.955 V	-300.0132 V	–299.9868 V

Table 20. DC Voltage Verification Limits

AC Voltage

Table 21.	AC Voltage	Verification	Limits
-----------	------------	--------------	--------

Calibrate	or Output		1-Year Limits		24-Hou	r Limits
Amplitude	Frequency	Range (V)	Lower	Upper	Lower	Upper
4 mV	1 kHz	200 m	3.892 mV	4.108 mV	3.912 mV	4.088 mV
20 mV	1 kHz	200 m	19.86 mV	20.14 mV	19.88 mV	20.12 mV
200 mV	1 kHz	200 m	199.5 mV	200.5 mV	199.52 mV	200.48 mV
40 mV	1 kHz	2	38.92 mV	41.08 mV	39.12 mV	40.88 mV
200 mV	1 kHz	2	198.6 mV	201.4 mV	198.8 mV	201.2 mV
2 V	1 kHz	2	1.995 V	2.005 V	1.9952 V	2.0048 V
400 mV	1 kHz	20	389.2 mV	410.8 mV	391.2 mV	408.8 mV
2 V	1 kHz	20	1.986 V	2.014 V	1.988 V	2.012 V

Calibrat	Calibrator Output		1-Year Limits		24-Hou	r Limits
Amplitude	Frequency	Range (V)	Lower	Upper	Lower	Upper
20 V	1 kHz	20	19.95 V	20.05 V	19.952 V	20.048 V
6 V	1 kHz	300	5.838 V	6.162 V	5.868 V	6.132 V
30 V	1 kHz	300	29.79 V	30.21 V	29.82 V	30.18 V
300 V	1 kHz	300	299.25 V	300.75 V	299.28 V	300.72 V
200 mV	10 Hz	200 m	195.9 mV	204.1 mV	196.92 mV	203.08 mV
200 mV	40 Hz	200 m	195.9 mV	204.1 mV	196.92 mV	203.08 mV
200 mV	20 kHz	200 m	199.5 mV	200.5 mV	199.52 mV	200.48 mV
200 mV	50 kHz	200 m	199.3 mV	200.7 mV	199.32 mV	200.68 mV
200 mV	100 kHz	200 m	196.84 mV	203.16 mV	196.84 mV	203.16 mV
2 V	10 Hz	2	1.959 V	2.041 V	1.9692 V	2.0308 V
2 V	40 Hz	2	1.959 V	2.041 V	1.9692 V	2.0308 V
2 V	20 kHz	2	1.995 V	2.005 V	1.9952 V	2.0048 V
2 V	50 kHz	2	1.993 V	2.007 V	1.9932 V	2.0068 V
2 V	100 kHz	2	1.9684 V	2.0316 V	1.9684 V	2.0316 V
20 V	10 Hz	20	19.59 V	20.41 V	19.692 V	20.308 V
20 V	40 Hz	20	19.59 V	20.41 V	19.692 V	20.308 V
20 V	20 kHz	20	19.95 V	20.05 V	19.952 V	20.048 V
20 V	50 kHz	20	19.93 V	20.07 V	19.932 V	20.068 V
20 V	100 kHz	20	19.684 V	20.316 V	19.684 V	20.316 V
200 V	10 Hz	300	195.85 V	204.15 V	196.88 V	203.12 V
200 V	40 Hz	300	195.85 V	204.15 V	196.88 V	203.12 V
200 V	20 kHz	300	199.45 V	200.55 V	199.48 V	200.52 V
200 V	50 kHz	300	199.25 V	200.75 V	199.28 V	200.72 V
200 V	100 kHz	300	196.76 V	203.24 V	196.76 V	203.24 V

 Table 21. AC Voltage Verification Limits (Continued)

4-Wire Resistance

		Limits, 1-	Year (±)	Limits, 24-hour (±)			
Calibrator Resistance	Range (Ω)	ppm of Reading*	ppm of Range	ppm of Reading*	ppm of Range		
0 Ω	100						
10 Ω	100	110	40	30	30		
100 Ω	100						
0 Ω	1 k						
100 Ω	1 k	110	20	20	8		
1 kΩ	1 k						
0 Ω	10 k						
1 kΩ	10 k	110	20	20	8		
10 kΩ	10 k						
0 Ω	100 k						
10 kΩ	100 k	110	20	20	8		
100 kΩ	100 k						
0 Ω	1 M						
100 kΩ	1 M	125	24	20	12		
1 MΩ	1 M						
* ppm of Reading applied to displayed discrete resistance value of calibrator.							

 Table 22.
 4-Wire Resistance Verification Tolerances

2-Wire Resistance

Table 23.	2-Wire	Resistance	Verification	Tolerances
-----------	--------	------------	--------------	------------

		Limits, 1-	Year (±)	Limits, 24-hour (±)	
Calibrator Resistance	Range (Ω)	ppm of Reading*	ppm of Range	ppm of Reading*	ppm of Range
10 Ω	100	110	2040	30	2030
100 Ω	100	110			
100 Ω	1 k	110	220	20	208
1 kΩ	1 k	110			
1 kΩ	10 k	110	40	20	29
10 kΩ	10 k	110		20	28

		Limits, 1-	-Year (±)	Limits, 24-hour (±)			
Calibrator Resistance	Range (Ω)	ppm of Reading*	ppm of Range	ppm of Reading*	ppm of Range		
10 kΩ	100 k	110	22	20	10		
100 kΩ	100 k	Limits, I ppm of Reading* 110 125 500 8000					
100 kΩ	1 M	125	24	20	12		
1 MΩ	1 M	125					
1 MΩ	10 M	500	24	150	12		
10 MΩ	10 M	500					
10 MΩ	100 M	8000	60	2000	24		
100 ΜΩ	100 M	8000					
* ppm of Reading applied to displayed discrete resistance value of calibrator.							

Table 23. 2-Wire Resistance Verification Tolerances (Continued)

Table 24. 2-Wire 0 Ω Resistance Verification Tolerances

Shorting Bar	Range (Ω)	Limits, 1-Year (±ppm)	Limits, 24-hour (±ppm)
0 Ω	100 M	60	24
0 Ω	10 M	24	12
0 Ω	1 M	24	12
0 Ω	100 k	22	10
0 Ω	10 k	40	28
0 Ω	1 k	220	208
0 Ω	100	2040	2030

DC Current

Table 25. DC Current Verification Limits

		1-Year Limits		24-Hour Limits	
Calibrator Amplitude	Range (A)	Lower	Upper	Lower	Upper
-10 mA	10 m	-10.007 mA	–9.993 mA	-10.0015 mA	–9.9985 mA
0 A	10 m	-2 μA	2 μΑ	-1 μA	1 μΑ
10 mA	10 m	9.993 mA	10.007 mA	9.9985 mA	10.0015 mA
-100 mA	100 m	-100.055 mA	–99.945 mA	-100.014 mA	–99.986 mA
0 A	100 m	-5 μA	5 μΑ	-4 μA	4 μΑ

		1-Year Limits		24-Hour Limits	
Calibrator Amplitude	Range (A)	Lower	Upper	Lower	Upper
100 mA	100 m	99.945 mA	100.055 mA	99.986 mA	100.014 mA
-1 A	1	-1.0011 A	-0.9989 A	-1.00056 A	-0.99944 A
0 A	1	-100 μA	100 µA	-60 μA	60 µA
1 A	1	0.9989 A	1.0011 A	0.99944 A	1.00056 A
-2.2 A	3	-2.204241 A	-2.195759 A	-2.203801 A	-2.196199 A
0 A	3	-600 μA	600 µA	-600 μA	600 µA
2.2 A	3	2.195759 A	2.204241 A	2.196199 A	2.203801 A

Table 25. DC Current Verification Limits (Continued)

AC Current

Calibrator Output			1-Year	Limits	24-Hour Limits	
Amplitude	Frequency	Range (A)	Lower	Upper	Lower	Upper
200 μΑ	1 kHz	10 m	193.4 µA	206.6 µA	194.4 µA	205.6 µA
1 mA	1 kHz	10 m	0.991 mA	1.009 mA	0.992 mA	1.008 mA
10 mA	1 kHz	10 m	9.964 mA	10.036 mA	9.965 mA	10.035 mA
2 mA	1 kHz	100 m	1.934 mA	2.066 mA	1.944 mA	2.056 mA
10 mA	1 kHz	100 m	9.91 mA	10.09 mA	9.92 mA	10.08 mA
100 mA	1 kHz	100 m	99.64 mA	100.36 mA	99.65 mA	100.35 mA
10 mA	1 kHz	500 m	9.67 mA	10.33 mA	9.72 mA	10.28 mA
50 mA	1 kHz	500 m	49.55 mA	50.45 mA	49.6 mA	50.4 mA
500 mA	1 kHz	500 m	498.2 mA	501.8 mA	498.25 mA	501.75 mA
60 mA	1 kHz	3	58.02 mA	61.98 mA	58.32 mA	61.68 mA
300 mA	1 kHz	3	297.3 mA	302.7 mA	297.6 mA	302.4 mA
2.2 A	1 kHz	3	2.1916 A	2.2084 A	2.1919 A	2.2081 A

 Table 26.
 AC Current Verification Limits

Appendix A: Calibration Options

The complete calibration process consists of verifying, adjusting, and reverifying a device. During verification, you compare the measured performance to an external standard of known measurement uncertainty to confirm the product meets or exceeds specifications. Figure 9 shows the procedural flow for verification. During adjustment, you correct the measurement error of the device by adjusting the calibration constants and storing the new calibration constants in the EEPROM. Figure 10 shows the procedural flow for adjustment.

The calibration sequence is as follows:

- 1. Verify the operation of the NI 4065 using the 1-year accuracy limits (or the 90-day accuracy limits if it has been calibrated within that time).
- 2. Adjust the NI 4065.
- 3. Reverify the NI 4065 using the 24-hour accuracy limits (or the 1-year accuracy limits when the 24-hour limits are not specified).

Note You must compare the verification limits provided in this procedure with the most recent specifications. Refer to the latest *NI 4065 Specifications* at ni.com/manuals.

Figure 9. Verification Procedures Flowchart

Figure 10. Adjustment Procedures Flowchart

Where to Go for Support

The National Instruments Web site is your complete resource for technical support. At ni.com/support you have access to everything from troubleshooting and application development self-help resources to email and phone assistance from NI Application Engineers.

A Declaration of Conformity (DoC) is our claim of compliance with the Council of the European Communities using the manufacturer's declaration of conformity. This system affords the user protection for electromagnetic compatibility (EMC) and product safety. You can obtain the DoC for your product by visiting ni.com/certification. If your product supports calibration, you can obtain the calibration certificate for your product at ni.com/calibration.

National Instruments corporate headquarters is located at 11500 North Mopac Expressway, Austin, Texas, 78759-3504. National Instruments also has offices located around the world to help address your support needs. For telephone support in the United States, create your service request at ni.com/support and follow the calling instructions or dial 512 795 8248. For telephone support outside the United States, visit the Worldwide Offices section of ni.com/niglobal to access the branch office Web sites, which provide up-to-date contact information, support phone numbers, email addresses, and current events.

CVI, LabVIEW, National Instruments, NI, ni.com, the National Instruments corporate logo, and the Eagle logo are trademarks of National Instruments Corporation. Refer to the *Trademark* Information at ni.com/trademarks for other National Instruments trademarks. The mark LabWindows is used under a license from Microsoft Corporation. Windows is a registered trademark of Microsoft Corporation in the United States and other countries. Other product and company names mentioned herein are trademarks or trade names of their respective companies. For patents covering National Instruments products/technology, refer to the appropriate location: **Help»Patents** in your software, the patents.txt file on your media, or the National Instruments Patent Notice at ni.com/patents. Refer to the Azional Instruments global trade compliance policy and how to obtain relevant HTS codes, ECCNs, and other import/export data.

© 2007–2011 National Instruments Corporation. All rights reserved.