PCle-5785 Specifications

2024-12-27

n

Contents

PCIe-5785 Specifications	3
	_

PCIe-5785 Specifications

Definitions

Warranted specifications describe the performance of a model under stated operating conditions and are covered by the model warranty.

Characteristics describe values that are relevant to the use of the model under stated operating conditions but are not covered by the model warranty.

- **Typical** specifications describe the performance met by a majority of models.
- *Nominal* specifications describe an attribute that is based on design, conformance testing, or supplemental testing.
- *Measured* specifications describe the measured performance of a representative model.

Specifications are *Typical* unless otherwise noted.

Digital I/O

Connector	Molex™ Nano-Pitch I/O™
5.0 V Power	±5%, 50 mA maximum, nominal

Table 1. Digital I/O Signal Characteristics

Signal	Туре	Direction
MGT Tx± <03> ^[1]	Xilinx UltraScale GTH	Output
MGT Rx± <03> ^[1]	Xilinx UltraScale GTH	Input
DIO <07>	Single-ended	Bidirectional

Signal	Туре	Direction
5.0 V	DC	Output
GND	Ground	—

Digital I/O Single-Ended Channels

Number of channels	8
Signal type	Single-ended
Voltage families	3.3 V, 2.5 V, 1.8 V, 1.5 V, 1.2 V
Input impedance	100 kΩ, nominal
Output impedance	50 Ω, nominal
Direction control	Per channel
Minimum required direction change latency	200 ns
Maximum output toggle rate	60 MHz with 100 μA load, nominal

Table 2. Digital I/O Single-Ended DC Signal Characteristics

Voltage Family (V)	V _{IL} (V)	V _{IH} (V)	V _{OL} (100 μA Load) (V)	V _{OH} (100 µA Load) (V)	Maximum DC Drive Strength (mA)
3.3	0.8	2.0	0.2	3.0	24
2.5	0.7	1.6	0.2	2.2	18

Voltage Family (V)	V _{IL} (V)	V _{IH} (V)	V _{OL} (100 μA Load) (V)	V _{OH} (100 µA Load) (V)	Maximum DC Drive Strength (mA)
1.8	0.62	1.29	0.2	1.5	16
1.5	0.51	1.07	0.2	1.2	12
1.2	0.42	0.87	0.2	0.9	6

Digital I/O High-Speed Serial MGT^[3]

Note MGTs are available on devices with KU040 and KU060 FPGAs only.

Data rate	500 Mbps to 16.375 Gbps, nominal
Number of Tx channels	4
Number of Rx channels	4
I/O AC coupling capacitor	100 nF

MGT TX± Channels^[4]

Minimum differential output voltage ^[5]	170 mV pk-pk into 100 Ω, nominal	
I/O coupling	AC-coupled, includes 100 nF capacitor	

MGT RX± Channels

Differential input voltage range	
----------------------------------	--

≤ 6.6 Gb/s	150 mV pk-pk to 2000 mV pk-pk, nominal		
> 6.6 Gb/s	150 mV pk-pk to 1250 mV pk-pk, nominal		
Differential input resistance		100 Ω, nominal	
I/O coupling		DC-coupled, requires external capacitor	

Reconfigurable FPGA

PCIe-5785 modules are available with multiple FPGA options. The following table lists the FPGA specifications for the PCIe-5785 FPGA options.

Table 3. Reconfigurable FPGA Options

	KU035	KU040	KU060
	K0035	KUU40	KUUGU
LUTs	203,128	242,200	331,680
DSP48 slices (25 × 18 multiplier)	1,700	1,920	2,760
Embedded Block RAM	19.0 Mb	21.1 Mb	38.0 Mb
Data Clock Domain	200 MHz, 16 samples per cycle per channel (dual channel mode), 32 samples per cycle (single channel mode)		
Timebase reference sources	Onboard 100 MHz oscillator		
Data transfers	DMA, interrupts, programmed I/ODMA, interrupts, programmed I/O, multi-gigabit transceivers		
Number of DMA channels	60		

Note The Reconfigurable FPGA Options table depicts the total number of

FPGA resources available on the part. The number of resources available to the user is slightly lower, as some FPGA resources are consumed by boardinterfacing IP for PCI Express, device configuration, and various board I/O. For more information, contact NI support.

Onboard DRAM

Memory size	4 GB (2 banks of 2 GB)
DRAM clock rate	1064 MHz
Physical bus width	32 bit
LabVIEW FPGA DRAM clock rate	267 MHz
LabVIEW FPGA DRAM bus width	256 bit per bank
Maximum theoretical data rate	17 GB/s (8.5 GB/s per bank)

Analog Input

General Characteristics

Number of channels	2, single-ended, simultaneously sampled
Connector type	SMA

Input impedance	50 Ω	50 Ω		
Input coupling	AC	AC		
Sample Clock	1			
Internal Sample Clock			3.2 GHz	
External Sample Clock		2.8 GHz to 3.2 GHz		
Sample Rate				
Dual channel mode		3.2	GS/s per channel	
Single channel mode		6.4	GS/s	
Analog-to-digital converter (ADC) ADC1		ADC12DJ3200, 12-bit resolution		
Input latency ^[6]	239 ns			

Typical Specifications

Full-scale input range	1.25 V pk-pk (5.92 dBm) at 10 MHz
AC gain accuracy	±0.11 dB at 10 MHz
DC offset	±2.19 mV

Bandwidth (-3 dB) ^[7]	500 kHz to 6 GHz	

Table 4 Single-Tone	Spectral Performance,	Dual Channel Mode
Table T. Single-Tone	Spectrati enormance,	Dual Channel Moue

	Input Frequency				
	99.9 MHz	399 MHz 999 MHz		1.999 GHz	2.499 GHz
SNR ^[8] (dBFS)	56.0	55.6	54.7	52.9	51.6
SINAD ^[8] (dBFS)	55.5	55.0	54.0	51.8	50.8
SFDR (dBc)	-64.9	-63.4	-62.7	-59.9	-58.6
ENOB ^[9] (bits)	8.9	8.8	8.7	8.3	8.1

Table 5. Single-Tone Spectral Performance, Single Channel Mode^[10]

	Input Frequency				
	99.9 MHz	399 MHz	1.999 GHz	2.499 GHz	
SNR ^[8] (dBFS)	54.6	54.2	52.4	49.7	48.9
SINAD ^[8] (dBFS)	54.4	53.9	52.1	49.4	48.6
SFDR (dBc)	-61.7	-60.4	-56.1	-51.7	-51.1
ENOB ^[9] (bits)	8.7	8.7	8.4	7.9	7.8

Table 6. Noise Spectral Density^[11]

Mode	$\frac{nV}{\sqrt{Hz}}$	<u>dBm</u> Hz	dBFS Hz
Dual channel	14.4	-143.8	-149.2
Single channel	9.8	-147.2	-152.6

Note Noise spectral density is verified using a 50 Ω terminator connected to the input.

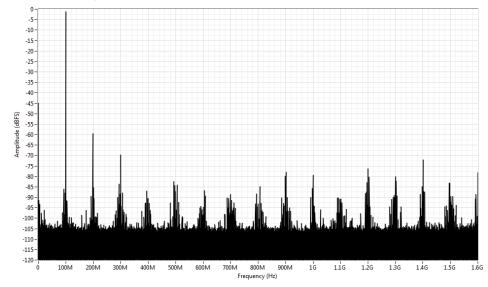
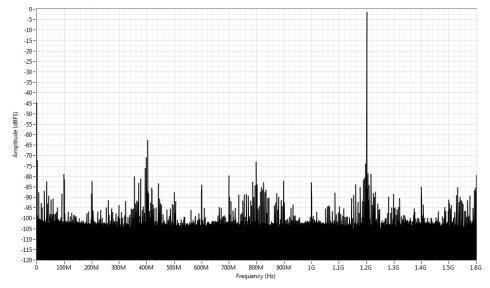
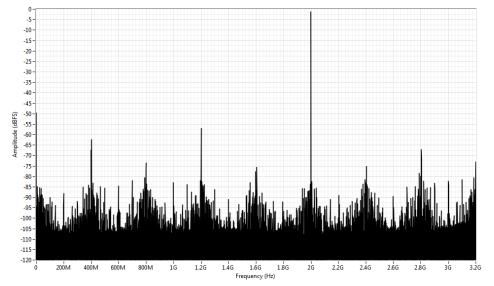
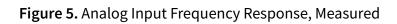
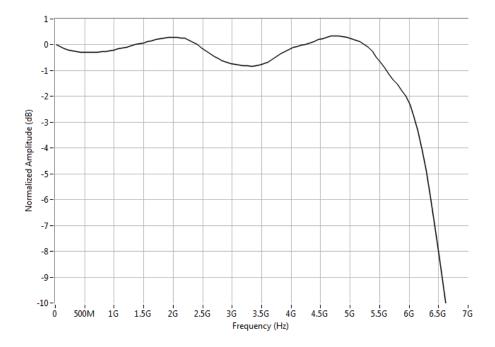


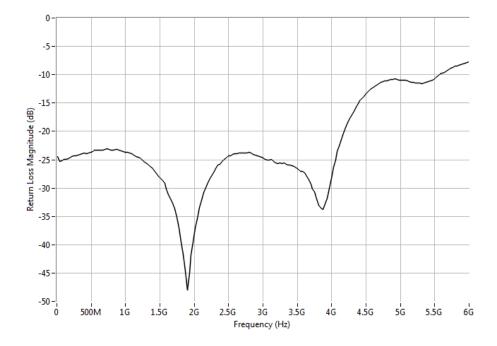
Figure 1. Single Tone Spectrum (Dual Channel Mode, 99.9 MHz, -1 dBFS, 3.2 kHz RBW), Measured

Figure 2. Single Tone Spectrum (Dual Channel Mode, 1.999 GHz, -1 dBFS, 3.2 kHz RBW), Measured


Figure 3. Single Tone Spectrum (Single Channel Mode, 99.9 MHz, -1 dBFS, 3.2 kHz RBW), Measured


Figure 4. Single Tone Spectrum (Single Channel Mode, 1.999 GHz, -1 dBFS, 3.2 kHz RBW), Measured



Channel-to-channel crosstalk, measured		
99.9 MHz	-92.5 dB	
399 MHz	-85.5 dB	
999 MHz	-76.5 dB	

1.999 GHz	-68.8 dB
2.499 GHz	-67.4 dB

Figure 6. Input Return Loss, Measured

Analog Output

General Characteristics

Number of channels	2, single-ended, simultaneously updated			
Connector type	SMA			
Output impedance	50 Ω			
Output coupling	AC			
Update rate				
Internal Sample Clock, 2x interpolation		6.4 GS/s		

External Sample Clock, 2x interpolation			6.4 GS/s ^[12]	
Data rate (per channel)				
Dual channel mode		3.2 GS/s, real		
Single channel mode		3.2 GS/s, complex		
Digital-to-analog converter (DAC) DAC38R		F82, 12-bit r	esolution	
Output latency ^[13]				
DUC disabled			211 ns	
DUC enabled			221 ns	

Typical Specifications

Note Due to a silicon flaw in the TI DAC38RF82 chip, there is a 0.5% chance of seeing a 50 mV glitch at the output of either channel after a bitfile redownload, invoking the Reset method explicitly or by closing the FPGA reference, or committing a new configuration.

Full-scale output power ^[14]	
Dual Channel Mode	2.85 dBm (878 mVpp)
Single Channel Mode	-3.33 dBm (431 mVpp)
Bandwidth (-3 dB) ^[15]	

Dual Channel Mode	3 MHz to 1.53 GHz
Single Channel Mode (no anti-image filter)	60 MHz to 2.85 GHz
Single Channel Mode (with anti-image filter)	60 MHz to 2.35 GHz

Table 7. Single Tone Spectral Performance, Dual Channel Mode

	Generation Frequency	
	501 MHz	1.01 GHz
2nd HD (dBc)	-67.8	-61.7
3rd HD (dBc)	-63.0	-62.0
SFDR (dBc)	-63.0	-61.7

 Table 8. Single Tone Spectral Performance, Single Channel Mode

	Generation Frequency
	1.01 GHz
2nd HD (dBc)	-62.4
3rd HD (dBc)	-67.3
SFDR (dBc)	-62.4


Table 9. IMD3 Performance, Dual Channel Mode, Measured

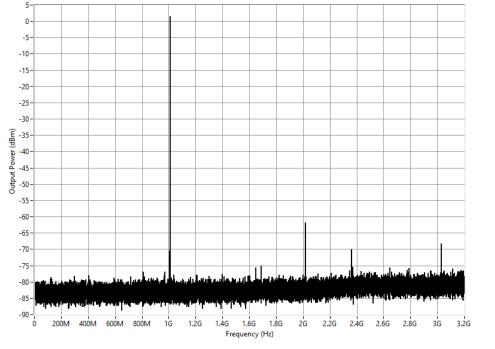
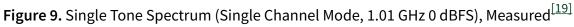

		Generation Frequency501 MHz and 511 MHz1.005 GHz and 1.015 GHz	
IMD3 (dB	c)	-73.9	-67.6

Table 10. Noise Spectral Density $^{[18]}$


	501 MHz Generation Frequency		
Mode	<u>nV</u> √Hz	<u>dBm</u> Hz	dBFS Hz
Dual Channel	1.18	-165.5	-168.4
Single Channel	0.941	-167.5	-164.2

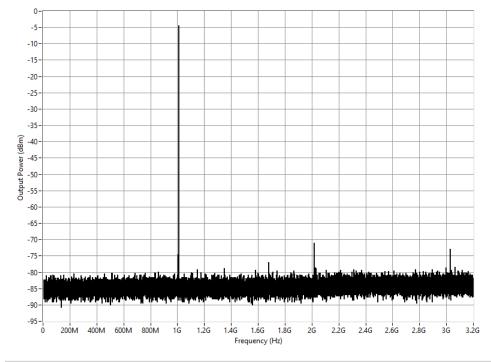

Figure 7. Single Tone Spectrum (Dual Channel Mode, 501 MHz 0 dBFS), Measured $^{[19]}$

Figure 8. Single Tone Spectrum (Dual Channel Mode, 1.01 GHz 0 dBFS), Measured^[19]

500 MHz	-91 dBc
1.0 GHz	-90 dBc
1.5 GHz	-88 dBc
2.0 GHz	-82 dBc
2.5 GHz	-82 dBc

Figure 10. Analog Output Dual Channel Mode Frequency Response, Measured $^{[21]}$

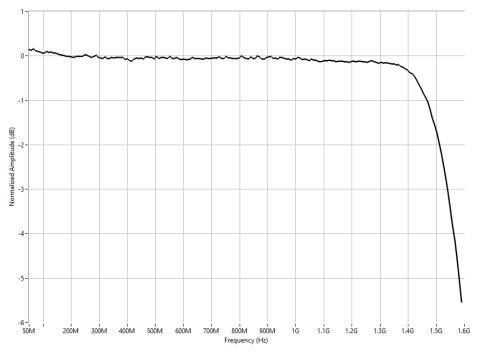
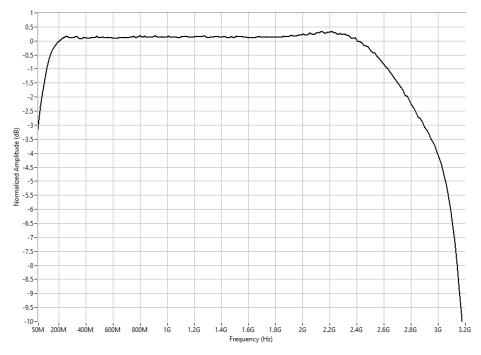
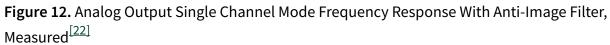
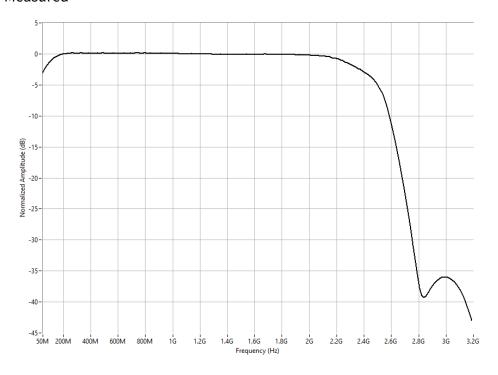





Figure 11. Analog Output Single Channel Mode Frequency Response, No Anti-Image Filter,

Measured^[21]

0. No Anti-Image Filter \sim With Anti-Image Filter -5--10-Return Loss Magnitude (dB) -15-******* -20 -25 -30--35-| 0 2G 2.2G 2.4G 2.6G 2.8G 3G 200M 400M 600M 800M 1G 1.2G 1.4G 1.6G 1.8G Frequency (Hz)

Figure 13. Analog Output Return Loss, Measured

REF/CLK IN

General Characteristics

Connector type	SMA
Input impedance	50 Ω
Input coupling	AC
Input voltage range	0.35 V pk-pk to 3.5 V pk-pk, nominal
Absolute maximum voltage	±12 V DC, 4 V pk-pk AC
Duty cycle	45% to 55%

Sample Clock jitter	
Analog input	86.8 fs _{rms} , measured ^[23]
Analog output	198.8 fs _{rms} , measured ^[24]

Table 11. Clock Configuration Options

Clock Configuration	External Clock Frequency	Description
Internal Baseboard Reference Clock ^[25]	10 MHz	The internal Sample Clock locks to the 10 MHz Reference Clock provided from the FPGA baseboard.
External Reference Clock (REF/ CLK IN)	10 MHz ^[26]	The internal Sample Clock locks to an external Reference Clock, which is provided through the REF/CLK IN front panel connector.
External Sample Clock (REF/CLK IN)	2.8 GHz to 3.2 GHz	An external Sample Clock can be provided through the REF/ CLK IN front panel connector.

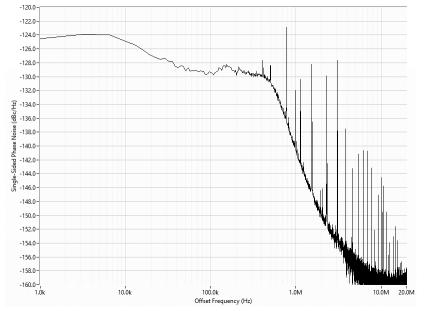
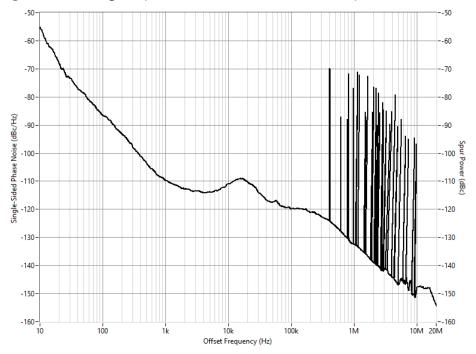



Figure 14. Analog Input Phase Noise with 800 MHz Input Tone, Measured

Figure 15. Analog Output Phase Noise with 1 GHz Output Tone, Measured

Bus Interface

Card edge form factor	PCI Express Gen-3 x8
-----------------------	----------------------

Slot compatibility

Maximum Power Requirements

Note Power requirements depend on the contents of the LabVIEW FPGA VI used in your application.

+3.3 V	4.5 A
+12 V	5 A
Maximum total power	75 W

Physical

Dimensions (including I/O bracket, not including connectors)	12.6 cm × 26.3 cm × 4 cm (5.0 in. × 10.4 in. × 1.6 in.)
Weight	990 g (35 oz)
PCI Express mechanical form factor	Standard height, three-quarter length, double slot
Integrated air mover (fan)	Yes
Maximum rear panel exhaust airflow	84 m ³ /h (50 CFM) (without any chassis

	impedance)

Environmental

Maximum altitude	2,000 m (800 mbar) (at 25 °C ambient temperature)
Pollution degree	2

Indoor use only.

Operating Environment

Operating temperature, local ^[27]	0 °C to 45 °C
Operating humidity	10% to 90% RH, noncondensing

Storage Environment

Ambient temperature range	-20 °C to 70 °C
Relative humidity range	5% to 95% RH, noncondensing